Dosimetric comparison of intensity modulated radiosurgery with dynamic conformal arc radiosurgery for small cranial lesions. 2016

Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
Department of Radiation Oncology, Hospital Quirón Barcelona, Barcelona, Spain.

OBJECTIVE To dosimetrically compare the fixed gantry intensity modulated radiosurgery (IMRS) with dynamic conformal arc radiosurgery (DCARS) for cranial lesions. This study investigates whether IMRS can be an adequate dosimetric alternative to DCARS for cranial stereotactic radiosurgery (SRS). METHODS Forty-five SRS procedures for solitary brain metastasis (range: 0.44-29.18 cm 3) performed at our institution were selected for this study. Two plans were generated per patient: One IMRS plan using a multileaf collimation (MLC) of 5 mm, and one DCARS plan designed with a 3 mm micro-MLC. Dosimetric comparison metrics include the target coverage (Cov), conformity index (CI), homogeneity index (HI), gradient index (GI), and volume of the normal brain tissue receiving ≥12 Gy (V12). In addition, maximum doses to organs at risk (OAR) (brainstem, optic apparatus and cochlea) were compared for both techniques. RESULTS Compared to DCARS, IMRS improved mean CI (IMRS: 0.81 vs. 0.63, P < 0.001), with no significant difference in target Cov (IMRS: 0.99 vs. 0.99, P > 0.05), HI (IMRS: 1.22 vs. 1.24, P > 0.05), GI (IMRS: 5.44 vs. 5.44, P > 0.05). A weak significant difference in V12 (IMRS: 4.6 cm 3 vs. 5.2 cm 3, P = 0.033) was obtained. Subgroup analysis per target volume (small: <1 cm 3, intermediate: ≤1 cm 3 and <5 cm 3 and large: ≥5 cm 3) only revealed the statistically difference for CI metric (P < 0.001). No significant differences were found for maximum dose to the OAR. CONCLUSIONS We have shown that IMRS provides the dosimetric advantages compared with DCARS. Based on the dosimetric findings in this study, fixed gantry IMRS technique can be adopted as a standard procedure for cranial SRS when micro-MLC technology is not available on the linear accelerator.

UI MeSH Term Description Entries
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation
D047368 Tumor Burden The total amount (cell number, weight, size or volume) of tumor cells or tissue in the body. Tumor Load,Tumor Volume,Tumor Weight,Burden, Tumor,Load, Tumor,Loads, Tumor,Tumor Loads,Tumor Weights,Volume, Tumor,Weight, Tumor,Weights, Tumor
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies

Related Publications

Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2016, Journal of applied clinical medical physics,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
May 2005, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2019, Journal of B.U.ON. : official journal of the Balkan Union of Oncology,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2011, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2014, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2012, Journal of radiosurgery and SBRT,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
October 2021, Journal of radiation research,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
January 2001, Medical physics,
Juan F Calvo-Ortega, and David Delgado, and Sandra Moragues, and Miquel Pozo, and Joan Casals
February 2005, Medical physics,
Copied contents to your clipboard!