Discrimination among odorants by single neurons of the rat olfactory bulb. 1989

D P Wellis, and J W Scott, and T A Harrison
Department of Anatomy and Cell Biology, Emory University, Atlanta, Georgia 30322.

1. Intracellular and extracellular recordings were made from rat olfactory bulb mitral and tufted cells during odor stimulation and during electrical stimulation of the olfactory nerve. Neurons were identified by horseradish peroxidase injections and/or antidromic activation. The presentation of multiple concentrations of at least one odorant in a cyclic artificial sniff paradigm, as reported previously (10), allowed the study of odor responses. This approach was extended to multiple odorants to compare their concentration-response profiles. This procedure avoids the problems of interpretation resulting from nonequivalence of the effective concentrations of different odorants used as stimuli that have characterized previous studies of odor quality effects. Comparisons of intracellular events and responses to electrical stimulation with the odor-induced spike train activity allow us to begin to delineate the local circuitry involved in generating odor-induced responses. 2. The concentration-response profiles of the 72 cells in the present study are comparable to those previously reported for output neurons of the olfactory bulb, showing ordered changes in the temporal patterning of spike activity with step changes in odor concentration. However, eight of the neurons exhibited inhibitory responses to lower concentrations, but excitation, at similar latency, to higher concentrations of the same odorant. These data emphasize that to study pattern changes induced by changing odor quality the influence of stimulus intensity must also be carefully examined. The data also provide evidence that the temporal pattern evoked by an odorant is probably not in itself the code for odor quality recognition. 3. Complete concentration-response profiles, including subthreshold concentrations, to more than one odorant show that, although responses to the different odorant can evolve systematically with concentration, the responses to different odorants can evolve through very different patterns. For example, in some cells, the response patterns to different odors were complementary in form. These results demonstrate that the patterned responses of olfactory bulb neurons can reflect changes in odor quality as well as intensity. 4. Intracellular recording was employed to compare the temporal patterning of spikes during odor stimulation with membrane potential changes. In some cases, the spike pattern was closely correlated with apparent postsynaptic potentials. However, there were several clear exceptions. In five cells, a prominent hyperpolarization, seen in the first sniff of a series of 10 consecutive sniffs, was associated with pauses in spike activity. In the following

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000077222 Limonene A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). (+)-(R)-4-isopropenyl-1-methylcyclohexene,(+)-Limonene,(-)-Limonene,(4R)-1-methyl-4-(1-methylethenyl)cyclohexene,(4S)-1-methyl-4-isopropenylcyclohex-1-ene,(D)-Limonene,(R)-(+)-Limonene,(R)-4-isopropenyl-1-methylcyclohexene,1-Methyl-4-(1-methylethenyl)cyclohexene,4-Mentha-1,8-diene,AISA 5203-L (+)Limonene,Cyclohexene, 1-methyl-4-(1-methylethenyl)-, (4R)-,Dipentene,Limonene, (+)-,Limonene, (+-)-,Limonene, (+-)-isomer,Limonene, (R)-isomer,Limonene, (S)-isomer,d-Limonene,4 Mentha 1,8 diene,d Limonene

Related Publications

D P Wellis, and J W Scott, and T A Harrison
July 2006, The Journal of comparative neurology,
D P Wellis, and J W Scott, and T A Harrison
March 1996, Pflugers Archiv : European journal of physiology,
D P Wellis, and J W Scott, and T A Harrison
September 2012, Chemical senses,
D P Wellis, and J W Scott, and T A Harrison
November 2016, Scientific reports,
D P Wellis, and J W Scott, and T A Harrison
January 1985, Neirofiziologiia = Neurophysiology,
D P Wellis, and J W Scott, and T A Harrison
October 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D P Wellis, and J W Scott, and T A Harrison
February 2005, Journal of neurophysiology,
D P Wellis, and J W Scott, and T A Harrison
July 1999, The Journal of comparative neurology,
D P Wellis, and J W Scott, and T A Harrison
November 2001, Neuron,
D P Wellis, and J W Scott, and T A Harrison
March 2012, Nature neuroscience,
Copied contents to your clipboard!