Modeling Laterality of the Globus Pallidus Internus in Patients With Parkinson's Disease. 2017

Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

OBJECTIVE Neurosurgical interventions such as deep brain stimulation surgery of the globus pallidus internus (GPi) play an important role in the treatment of medically refractory Parkinson's disease (PD), and require high targeting accuracy. Variability in the laterality of the GPi across patients with PD has not been well characterized. The aim of this report is to identify factors that may contribute to differences in position of the motor region of GPi. METHODS The charts and operative reports of 101 PD patients following deep brain stimulation surgery (70 males, aged 11-78 years) representing 201 GPi were retrospectively reviewed. Data extracted for each subject include age, gender, anterior and posterior commissures (AC-PC) distance, and third ventricular width. Multiple linear regression, stepwise regression, and relative importance of regressors analysis were performed to assess the predictive ability of these variables on GPi laterality. RESULTS Multiple linear regression for target vs. third ventricular width, gender, AC-PC distance, and age were significant for normalized linear regression coefficients of 0.333 (p < 0.0001), 0.206 (p = 0.00219), 0.168 (p = 0.0119), and 0.159 (p = 0.0136), respectively. Third ventricular width, gender, AC-PC distance, and age each account for 44.06% (21.38-65.69%, 95% CI), 20.82% (10.51-35.88%), 21.46% (8.28-37.05%), and 13.66% (2.62-28.64%) of the R2 value, respectively. Effect size calculation was significant for a change in the GPi laterality of 0.19 mm per mm of ventricular width, 0.11 mm per mm of AC-PC distance, 0.017 mm per year in age, and 0.54 mm increase for male gender. CONCLUSIONS This variability highlights the limitations of indirect targeting alone, and argues for the continued use of MRI as well as intraoperative physiological testing to account for such factors that contribute to patient-specific variability in GPi localization.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
January 2010, Zhonghua yi xue za zhi,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
December 2013, Movement disorders : official journal of the Movement Disorder Society,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
September 2017, Acta neurochirurgica,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
April 2009, Journal of neural transmission (Vienna, Austria : 1996),
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
July 2001, Journal of neurophysiology,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
December 2017, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
February 2012, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
January 2005, Neuromodulation : journal of the International Neuromodulation Society,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
April 2000, Neurosurgery,
Justin Sharim, and Daniel Yazdi, and Amy Baohan, and Eric Behnke, and Nader Pouratian
August 1999, Neurosurgery,
Copied contents to your clipboard!