Energy metabolism in the perfused, arrested rabbit heart. 1989

G Kotsanas, and C L Gibbs, and I R Wendt
Department of Physiology, Monash University, Clayton, Australia.

Energy metabolism of quiescent cardiac muscle was studied in the isolated rabbit heart preparation perfused at constant pressure by the Langendorff technique. Oxygen consumption (MVo2), coronary flow rate (CFR) and the steady state concentrations of high energy phosphate compounds were determined in hearts rendered asystolic using modified Krebs-Henseleit (KH) media containing 11 mM glucose as substrate. Basal MVo2 and CFR were significantly higher in hearts arrested by Ca2+ depletion (low Ca KH) compared to K+ excess (high K KH). Substitution of glucose in low Ca KH with a mixture containing glutamate, fumarate and pyruvate (low Ca KH + GFP) resulted in a 25% increase in the basal MVo2 but a 20% decline in CFR. Supplementing the low Ca perfusate with 30 g/l dextran (low Ca KH + dextran) depressed both the basal MVo2 (35%) and CFR (75%). Differences in the basal MVO2 under the different perfusion conditions were not accompanied by significant changes in the tissue levels of ATP, CrP or Cr. Compared to low Ca KH arrested hearts, those perfused with low Ca KH + GFP or low Ca KH + dextran did, however, show significantly lower tissue levels of ADP, AMP and Pi, but higher cytosolic ratios of [ATP]/[ADP][Pi] and [CrP]/[Cr][Pi]. As a consequence of the higher phosphorylation potential the free energy of ATP hydrolysis increased. There was no significant difference in any of these parameters between high K KH and low Ca KH perfused hearts. It is concluded that in the perfused, arrested heart none of the parameters that are used to describe the myocardial energetic state, e.g. free [ADP] or the cytosolic [ATP]/[ADP][Pi] ratio, uniquely correlates with the basal metabolic rate as estimated from MVO2 measurements.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002314 Cardioplegic Solutions Solutions which, upon administration, will temporarily arrest cardiac activity. They are used in the performance of heart surgery. Cardioplegic Solution,Solution, Cardioplegic,Solutions, Cardioplegic
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

G Kotsanas, and C L Gibbs, and I R Wendt
February 1998, Cryobiology,
G Kotsanas, and C L Gibbs, and I R Wendt
September 1968, The American journal of cardiology,
G Kotsanas, and C L Gibbs, and I R Wendt
January 1975, Basic research in cardiology,
G Kotsanas, and C L Gibbs, and I R Wendt
July 2001, Journal of hypertension,
G Kotsanas, and C L Gibbs, and I R Wendt
July 1959, The American journal of physiology,
G Kotsanas, and C L Gibbs, and I R Wendt
January 1962, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
G Kotsanas, and C L Gibbs, and I R Wendt
January 1989, Annales francaises d'anesthesie et de reanimation,
G Kotsanas, and C L Gibbs, and I R Wendt
October 1978, Canadian journal of physiology and pharmacology,
G Kotsanas, and C L Gibbs, and I R Wendt
May 1982, Naunyn-Schmiedeberg's archives of pharmacology,
G Kotsanas, and C L Gibbs, and I R Wendt
January 1958, The American journal of cardiology,
Copied contents to your clipboard!