The disulfide bond connecting the chains of ricin. 1978

D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan

Studies on the disulfide bond connecting the two polypeptide chains of ricin are reported. Reduction of this bond in the native protein requires approximately 50-fold more mercaptoethanol than the reduction of the bond in the protein denatured by sodium dodecyl sulfate. An improved procedure for the formation of this disulfide bond from recombined chains is reported. A and B chains spontaneously and rapidly reassociate into a stable complex with a sedimentation velocity similar to that of native oxidized ricin before the disulfide bond reforms. The mixture of both chains also behaves on Bio-Gel P-100 like native oxidized ricin. However, the complex formed by the two chains, assayed before the disulfide bond can reform, and reduced ricin, carboxymethylated to prevent reoxidation, shows a significant decrease in toxicity to mice and a decrease in ability to inhibit protein synthesis in HeLa cells in culture.

UI MeSH Term Description Entries
D007928 Lethal Dose 50 The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population. LD50,Dose 50, Lethal
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
October 1994, The Journal of biological chemistry,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
May 1999, Biophysical journal,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
September 1986, The Journal of biological chemistry,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
January 2008, Chemistry (Weinheim an der Bergstrasse, Germany),
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
April 2011, Proteins,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
September 1979, The Journal of biological chemistry,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
September 1976, Indian journal of biochemistry & biophysics,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
April 1995, Biochimica et biophysica acta,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
December 2007, Current opinion in structural biology,
D A Lappi, and W Kapmeyer, and J M Beglau, and N O Kaplan
September 1991, Journal of immunological methods,
Copied contents to your clipboard!