Fluoride mouthrinses for preventing dental caries in children and adolescents. 2016

Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
Clinical and Diagnostic Oral Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, Whitechapel, London, UK, E1 2AD.

BACKGROUND Fluoride mouthrinses have been used extensively as a caries-preventive intervention in school-based programmes and by individuals at home. This is an update of the Cochrane review of fluoride mouthrinses for preventing dental caries in children and adolescents that was first published in 2003. OBJECTIVE The primary objective is to determine the effectiveness and safety of fluoride mouthrinses in preventing dental caries in the child and adolescent population.The secondary objective is to examine whether the effect of fluoride rinses is influenced by:• initial level of caries severity;• background exposure to fluoride in water (or salt), toothpastes or reported fluoride sources other than the study option(s); or• fluoride concentration (ppm F) or frequency of use (times per year). METHODS We searched the following electronic databases: Cochrane Oral Health's Trials Register (whole database, to 22 April 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 3), MEDLINE Ovid (1946 to 22 April 2016), Embase Ovid (1980 to 22 April 2016), CINAHL EBSCO (the Cumulative Index to Nursing and Allied Health Literature, 1937 to 22 April 2016), LILACS BIREME (Latin American and Caribbean Health Science Information Database, 1982 to 22 April 2016), BBO BIREME (Bibliografia Brasileira de Odontologia; from 1986 to 22 April 2016), Proquest Dissertations and Theses (1861 to 22 April 2016) and Web of Science Conference Proceedings (1990 to 22 April 2016). We undertook a search for ongoing trials on the US National Institutes of Health Trials Register (http://clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform. We placed no restrictions on language or date of publication when searching electronic databases. We also searched reference lists of articles and contacted selected authors and manufacturers. METHODS Randomised or quasi-randomised controlled trials where blind outcome assessment was stated or indicated, comparing fluoride mouthrinse with placebo or no treatment in children up to 16 years of age. Study duration had to be at least one year. The main outcome was caries increment measured by the change in decayed, missing and filled tooth surfaces in permanent teeth (D(M)FS). METHODS At least two review authors independently performed study selection, data extraction and risk of bias assessment. We contacted study authors for additional information when required. The primary measure of effect was the prevented fraction (PF), that is, the difference in mean caries increments between treatment and control groups expressed as a percentage of the mean increment in the control group. We conducted random-effects meta-analyses where data could be pooled. We examined potential sources of heterogeneity in random-effects metaregression analyses. We collected adverse effects information from the included trials. RESULTS In this review, we included 37 trials involving 15,813 children and adolescents. All trials tested supervised use of fluoride mouthrinse in schools, with two studies also including home use. Almost all children received a fluoride rinse formulated with sodium fluoride (NaF), mostly on either a daily or weekly/fortnightly basis and at two main strengths, 230 or 900 ppm F, respectively. Most studies (28) were at high risk of bias, and nine were at unclear risk of bias.From the 35 trials (15,305 participants) that contributed data on permanent tooth surface for meta-analysis, the D(M)FS pooled PF was 27% (95% confidence interval (CI), 23% to 30%; I(2) = 42%) (moderate quality evidence). We found no significant association between estimates of D(M)FS prevented fractions and baseline caries severity, background exposure to fluorides, rinsing frequency or fluoride concentration in metaregression analyses. A funnel plot of the 35 studies in the D(M)FS PF meta-analysis indicated no relationship between prevented fraction and study precision (no evidence of reporting bias). The pooled estimate of D(M)FT PF was 23% (95% CI, 18% to 29%; I² = 54%), from the 13 trials that contributed data for the permanent teeth meta-analysis (moderate quality evidence).We found limited information concerning possible adverse effects or acceptability of the treatment regimen in the included trials. Three trials incompletely reported data on tooth staining, and one trial incompletely reported information on mucosal irritation/allergic reaction. None of the trials reported on acute adverse symptoms during treatment. CONCLUSIONS This review found that supervised regular use of fluoride mouthrinse by children and adolescents is associated with a large reduction in caries increment in permanent teeth. We are moderately certain of the size of the effect. Most of the evidence evaluated use of fluoride mouthrinse supervised in a school setting, but the findings may be applicable to children in other settings with supervised or unsupervised rinsing, although the size of the caries-preventive effect is less clear. Any future research on fluoride mouthrinses should focus on head-to-head comparisons between different fluoride rinse features or fluoride rinses against other preventive strategies, and should evaluate adverse effects and acceptability.

UI MeSH Term Description Entries
D009067 Mouthwashes Solutions for rinsing the mouth, possessing cleansing, germicidal, or palliative properties. (From Boucher's Clinical Dental Terminology, 4th ed) Mouth Bath,Mouth Rinse,Mouth Wash,Bath, Mouth,Baths, Mouth,Mouth Baths,Mouth Rinses,Rinse, Mouth,Rinses, Mouth,Wash, Mouth
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003731 Dental Caries Localized destruction of the tooth surface initiated by decalcification of the enamel followed by enzymatic lysis of organic structures and leading to cavity formation. If left unchecked, the cavity may penetrate the enamel and dentin and reach the pulp. Caries, Dental,Carious Lesions,Dental Cavities,Dental Cavity,Dental Decay,Dental White Spots,Carious Dentin,Decay, Dental,Dental White Spot,White Spot, Dental,White Spots, Dental,Carious Dentins,Carious Lesion,Cavities, Dental,Cavity, Dental,Dentin, Carious,Dentins, Carious,Lesion, Carious,Lesions, Carious,Spot, Dental White,Spots, Dental White
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D016032 Randomized Controlled Trials as Topic Works about clinical trials that involve at least one test treatment and one control treatment, concurrent enrollment and follow-up of the test- and control-treated groups, and in which the treatments to be administered are selected by a random process, such as the use of a random-numbers table. Clinical Trials, Randomized,Controlled Clinical Trials, Randomized,Trials, Randomized Clinical
D019229 Dentition, Permanent The 32 teeth of adulthood that either replace or are added to the complement of deciduous teeth. (Boucher's Clinical Dental Terminology, 4th ed) Dentition, Adult,Dentition, Secondary,Adult Dentition,Permanent Dentition,Secondary Dentition

Related Publications

Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2018, Public health nursing (Boston, Mass.),
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2003, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2003, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2004, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2012, Current pharmaceutical design,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2002, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2003, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
July 2013, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2002, The Cochrane database of systematic reviews,
Valeria C C Marinho, and Lee Yee Chong, and Helen V Worthington, and Tanya Walsh
January 2004, The Cochrane database of systematic reviews,
Copied contents to your clipboard!