Constraints on the Radical Cation Center of Cytochrome c Peroxidase for Electron Transfer from Cytochrome c. 2016

Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.

The tryptophan 191 cation radical of cytochrome c peroxidase (CcP) compound I (Cpd I) mediates long-range electron transfer (ET) to cytochrome c (Cc). Here we test the effects of chemical substitution at position 191. CcP W191Y forms a stable tyrosyl radical upon reaction with peroxide and produces spectral properties similar to those of Cpd I but has low reactivity toward reduced Cc. CcP W191G and W191F variants also have low activity, as do redox ligands that bind within the W191G cavity. Crystal structures of complexes between Cc and CcP W191X (X = Y, F, or G), as well as W191G with four bound ligands reveal similar 1:1 association modes and heme pocket conformations. The ligands display structural disorder in the pocket and do not hydrogen bond to Asp235, as does Trp191. Well-ordered Tyr191 directs its hydroxyl group toward the porphyrin ring, with no basic residue in the range of interaction. CcP W191X (X = Y, F, or G) variants substituted with zinc-porphyrin (ZnP) undergo photoinduced ET with Cc(III). Their slow charge recombination kinetics that result from loss of the radical center allow resolution of difference spectra for the charge-separated state [ZnP(+), Cc(II)]. The change from a phenyl moiety at position 191 in W191F to a water-filled cavity in W191G produces effects on ET rates much weaker than the effects of the change from Trp to Phe. Low net reactivity of W191Y toward Cc(II) derives either from the inability of ZnP(+) or the Fe-CcP ferryl to oxidize Tyr or from the low potential of the resulting neutral Tyr radical.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D003578 Cytochrome-c Peroxidase A hemeprotein which catalyzes the oxidation of ferrocytochrome c to ferricytochrome c in the presence of hydrogen peroxide. EC 1.11.1.5. Cytochrome Peroxidase,Cytochrome c-551 Peroxidase,Cytochrome c 551 Peroxidase,Cytochrome c Peroxidase,Peroxidase, Cytochrome,Peroxidase, Cytochrome c-551,Peroxidase, Cytochrome-c
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
May 1999, Biochemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
November 1996, Biochemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
June 1995, Journal of bioenergetics and biomembranes,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
January 1988, Progress in clinical and biological research,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
February 2003, Biochemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
October 1993, Biochemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
March 1993, Biochemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
November 1980, The Journal of biological chemistry,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
May 1995, Biochemical Society transactions,
Thomas M Payne, and Estella F Yee, and Boris Dzikovski, and Brian R Crane
May 1984, The Journal of biological chemistry,
Copied contents to your clipboard!