Prediction of the secondary structure of myosin light chains from comparison of homologous sequences. Implications for the interaction between myosin heavy and light chains. 1989

J J Béchet, and M Houadjeto
Laboratoire de Biologie Physicochimique, UA CNRS 1131, Orsay, France.

The primary sequences of seventeen essential and seventeen regulatory myosin light chains were analyzed and compared, using algorithms based on the different structural properties of their amino acid residues. This process allowed estimation of the structural homology between the proteins studied, and improved the prediction of their mean secondary structure and functionally important segments or residues. On the basis of the crystal structure of troponin C, a model of the myosin essential light chain with a fairly compact form is proposed. The possible sites of interaction between myosin light and heavy chains from rabbit skeletal muscle were also investigated by a complementarity method adapted to helix-rich proteins. Segments 139-149 and 65-75 in the essential light chain and segments 27-37, 67-77 and 97-107 in the regulatory light chain are suggested to constitute some of these sites, as most of them were found to have the features of surface-seeking helices.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

J J Béchet, and M Houadjeto
January 1976, Recent advances in studies on cardiac structure and metabolism,
J J Béchet, and M Houadjeto
January 1996, Protein science : a publication of the Protein Society,
J J Béchet, and M Houadjeto
January 1991, Methods in enzymology,
J J Béchet, and M Houadjeto
October 1973, Biochimica et biophysica acta,
J J Béchet, and M Houadjeto
July 1983, The Journal of biological chemistry,
J J Béchet, and M Houadjeto
August 1981, Journal of biochemistry,
J J Béchet, and M Houadjeto
March 1974, Journal of immunology (Baltimore, Md. : 1950),
J J Béchet, and M Houadjeto
February 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!