Effects of normalization errors on size distributions obtained from dynamic light scattering data. 1989

H Ruf
Max-Planck-Institut für Biophysik, Frankfurt, Federal Republic of Germany.

This paper presents a study of the influence of normalization errors on size distributions obtained from the analysis of intensity fluctuations by photon correlation spectroscopy. The effects of these errors are demonstrated by means of computer-generated autocorrelation functions simulating light scattered from a monomodal Schulz distribution of small, spherical, unilamellar lipid vesicles. The calculations show that even small errors in the baseline, modifying the data upon normalization systematically, will cause serious errors in the estimated size distribution. As it turns out this is due to the peculiar characteristics of normalization errors in data of the first order autocorrelation function. The errors introduced there are described in parts by functions of the delay time having positive exponents. Such components are not considered in the integral equations commonly used to analyze the measured data. The error's property to be a function of delay time in turn enables us to obtain the relative baseline error from the inversion of the data. The new method for its determination is described in some detail. Here, it has been realized with a modified version of the size distribution algorithm CONTIN.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation

Related Publications

H Ruf
February 2005, Journal of the Optical Society of America. A, Optics, image science, and vision,
H Ruf
July 2022, European biophysics journal : EBJ,
Copied contents to your clipboard!