Interaction with normal cells suppresses the transformed phenotype of v-myc-transformed quail muscle cells. 1989

S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
Dipartimento di Biologia Cellulare e dello Sviluppo Università di Roma La Sapienza, Italy.

We have analyzed mixed cultures of normal mammalian fibroblastic cells and transformed quail myoblasts to investigate whether the presence of an excess of normal cells could suppress the phenotype of transformed quail cells. In such mixed cultures, only v-myc-transformed cells were growth-arrested, whereas v-src-transformed myoblasts were essentially unaffected. Growth arrest appeared to reflect reversion from the transformed state, including re-expression of the myogenic differentiation program. The v-myc-transformed myoblasts were phenotypically corrected also by differentiating normal quail myoblasts, giving rise to hybrid myotubes containing nuclei from both cell types. The differential behavior of transformed cells closely paralleled the efficiency with which they established metabolic cooperation with adjacent normal cells. Our results indicate that unrestrained proliferation associated with transformation is responsible for v-myc-induced block of myogenic differentiation.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese

Related Publications

S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
February 1999, Oncogene,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
October 1987, Cell,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
July 1996, The EMBO journal,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
May 1978, International journal of cancer,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
July 1995, Proceedings of the National Academy of Sciences of the United States of America,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
February 2011, Oncogene,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
April 1995, Oncogene,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
July 1991, Molecular and cellular biology,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
October 1988, Oncogene,
S A La Rocca, and M Grossi, and G Falcone, and S Alemà, and F Tatò
January 2019, Acta virologica,
Copied contents to your clipboard!