Crystallin gene expression during rat lens development. 1989

H J Aarts, and N H Lubsen, and J G Schoenmakers
Laboratory of Molecular Biology, University of Nijmegen.

The analysis of the developmental pattern of the alpha A-, alpha B-, beta B1-, beta B2-, beta B3-, beta A3/A1-, and beta s-crystallin genes during fetal and postnatal development of the rat shows that the differential regulation of crystallin synthesis relies on differential gene shutdown rather than differential gene activation; that is, all crystallin genes are active during early development but turn off at different stages. The only two exceptions to this rule are the alpha B- and beta s-crystallin genes. The alpha B-crystallin gene transcript becomes first detectable at 18 days of fetal development, while the beta s-crystallin gene appears to be active only in the postnatal period. We also determined the absolute numbers of the alpha A-, alpha B-, beta B1-, beta B2-, beta B3-, beta A3/A1-, beta s-, and gamma-crystallin gene transcripts present in the lens at various times after birth. Comparison of these RNA data with the published protein data shows that the alpha B- and beta B2-crystallin RNAs are relatively overrepresented, suggesting the possibility that these two RNA species are not used as efficiently as other crystallin mRNAs. Examination of the known (hamster) alpha B-crystallin sequence and elucidation of the (rat) beta B2-crystallin sequence yielded no evidence for aberrant codon usage. These two RNAs have one sequence motif in common: they are the only crystallin mRNAs in which the translation initiation codon is preceded by CCACC.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

H J Aarts, and N H Lubsen, and J G Schoenmakers
January 2015, Progress in molecular biology and translational science,
H J Aarts, and N H Lubsen, and J G Schoenmakers
April 1987, Developmental biology,
H J Aarts, and N H Lubsen, and J G Schoenmakers
August 1996, BioEssays : news and reviews in molecular, cellular and developmental biology,
H J Aarts, and N H Lubsen, and J G Schoenmakers
March 2010, Molecular vision,
H J Aarts, and N H Lubsen, and J G Schoenmakers
October 1986, Experimental eye research,
H J Aarts, and N H Lubsen, and J G Schoenmakers
April 2003, Mechanisms of development,
H J Aarts, and N H Lubsen, and J G Schoenmakers
January 2014, Current molecular medicine,
H J Aarts, and N H Lubsen, and J G Schoenmakers
January 1985, Biology of the cell,
H J Aarts, and N H Lubsen, and J G Schoenmakers
June 1978, Journal of embryology and experimental morphology,
Copied contents to your clipboard!