Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway. 2016

Abhishek Saxena, and Ramakrishnan Sitaraman
Department of Biotechnology, TERI University, New Delhi, India.

The response of Saccharomyces cerevisiae to osmotic stress, whether arising from environmental conditions or physiological processes, has been intensively studied in the last two decades. The well-known high-osmolarity glycerol (HOG) signalling pathway that is induced in response to osmotic stress interacts with other signalling pathways such as the cell wall integrity and the target of rapamycin pathways. Osmotic balance is also maintained by the regulated opening and closing of channel proteins in both the cell membrane and intracellular organelles such as the vacuole. Additionally, environmental stresses, including osmotic shock, induce intracellular calcium signalling. Thus, adaptation to environmental stresses in general, and osmotic stress in particular, is dependent on the concerted action of components of multiple interacting pathways. In this review, we describe some of the major mechanisms and molecules involved in osmoregulation via pathways other than the high-osmolarity glycerol pathway and their known interactions with one another that have been discovered over the last two decades.

UI MeSH Term Description Entries
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins
D064587 Osmoregulation The response of cells in sensing a difference in OSMOTIC PRESSURE between the inside and outside of the cell. This response includes signaling from osmotic sensors to activate transcription factors, which in turn regulate the expression of osmocompensatory genes, all functioning to maintain CELL VOLUME and the water concentration inside the cells. Osmotic Stress Regulating Pathway,Osmotic Stress Response,Osmotic Stress Responses,Response, Osmotic Stress,Responses, Osmotic Stress,Stress Response, Osmotic,Stress Responses, Osmotic

Related Publications

Abhishek Saxena, and Ramakrishnan Sitaraman
January 2022, Antioxidants (Basel, Switzerland),
Abhishek Saxena, and Ramakrishnan Sitaraman
November 1997, FEMS microbiology reviews,
Abhishek Saxena, and Ramakrishnan Sitaraman
November 2022, Critical reviews in microbiology,
Abhishek Saxena, and Ramakrishnan Sitaraman
June 2021, International journal of molecular sciences,
Abhishek Saxena, and Ramakrishnan Sitaraman
December 2009, FEBS letters,
Copied contents to your clipboard!