Singlet oxygen induces frank strand breaks as well as alkali- and piperidine-labile sites in supercoiled plasmid DNA. 1989

E R Blazek, and J G Peak, and M J Peak

A covalently closed, circular, supercoiled plasmid was exposed to singlet oxygen by a separated-surface sensitizer. For each exposure, the quantity of single oxygen entering the DNA target solution was estimated by its oxidation of histidine. After singlet oxygen exposure, some DNA samples were treated to disclose occult lesions. Agarose gel electrophoresis was then used to resolve the unrelaxed supercoils from the relaxed circular and linear species, and all bands were quantitated fluorometrically. Exposure of supercoiled plasmid DNA to singlet oxygen induced frank DNA strand breaks, alkali-labile sites (pH 12.5, 90 degrees C, 30 min), and piperidine-labile sites (0.4 M, 60 degrees C, 30 min), all in a dose-dependent manner. Yields of alkali-labile and piperidine-labile sites ranged from one to four times the frank strand break yield. Replacement of buffered H2O by buffered D2O as the DNA solvent for singlet oxygen exposures increased DNA lesion yields by a factor of 2.6 (averaged over lesion classes). Our data for the detection of frank strand breaks is at variance with published results from studies in which singlet oxygen was derived from a thermolabile endoperoxide dissolved in the DNA solution.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010880 Piperidines A family of hexahydropyridines.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D000468 Alkalies Usually a hydroxide of lithium, sodium, potassium, rubidium or cesium, but also the carbonates of these metals, ammonia, and the amines. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkali,Alkalis
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D026082 Singlet Oxygen An excited state of molecular oxygen generated photochemically or chemically. Singlet oxygen reacts with a variety of biological molecules such as NUCLEIC ACIDS; PROTEINS; and LIPIDS; causing oxidative damages. Singlet Dioxygen,Dioxygen, Singlet,Oxygen, Singlet

Related Publications

E R Blazek, and J G Peak, and M J Peak
October 1977, Nucleic acids research,
E R Blazek, and J G Peak, and M J Peak
December 1992, Proceedings of the National Academy of Sciences of the United States of America,
E R Blazek, and J G Peak, and M J Peak
March 1991, Biochimica et biophysica acta,
E R Blazek, and J G Peak, and M J Peak
January 1976, Journal of medicine,
E R Blazek, and J G Peak, and M J Peak
July 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine,
E R Blazek, and J G Peak, and M J Peak
February 1981, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Copied contents to your clipboard!