Effects of propafenone on electrical and mechanical activities of single ventricular myocytes isolated from guinea-pig hearts. 1989

H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
Department of Circulation and Respiration, Nagoya University, Japan.

1. The effects of propafenone on the transmembrane action potential and sarcomere shortening during twitch contraction were investigated in single ventricular myocytes isolated from guinea-pig hearts. 2. Propafenone at low concentrations (3-5 x 10(-7) M) slightly lengthened action potential duration (APD), but shortened it at higher concentrations. The shortening of APD was accompanied by an attenuation of sarcomere shortening during twitch contraction. 3. Propafenone (greater than 10(-6) M) caused a concentration-dependent decrease in the maximum upstroke velocity (Vmax) of the action potential. In the presence of propafenone (3 x 10(-6) M), trains of stimuli led to an exponential decline in Vmax. A time constant for the recovery of Vmax from the use-dependent block was 4.8 s. 4. In myocytes treated with propafenone (3 x 10(-6) M), the Vmax of test action potentials preceded by the conditioning clamp pulses to 0 mV was progressively decreased by increasing the duration of single clamp pulse or by increasing the number of multiple brief clamp pulses. 5. These findings suggest that propafenone has use-dependent inhibitory action on the sodium channel by binding to the channel during both activated and inactivated states, and that the unbinding rate is comparable to that of Class-I antiarrhythmic drugs with intermediate kinetics. Propafenone may also have an inhibitory action on calcium and potassium channels.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011405 Propafenone An antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. Apo-Propafenone,Arythmol,Baxarytmon,Cuxafenon,Fenoprain,Jutanorm,Nistaken,Norfenon,Pintoform,Prolecofen,Propafenon AL,Propafenon Hexal,Propafenon Minden,Propafenone Hydrochloride,Propafenone Hydrochloride, (R)-Isomer,Propafenone Hydrochloride, (S)-Isomer,Propafenone, (+-)-Isomer,Propafenone, (R)-Isomer,Propafenone, (S)-Isomer,Propamerck,Rythmol,Rytmo-Puren,Rytmogenat,Rytmonorm,SA-79,Hydrochloride, Propafenone,SA 79,SA79
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
May 1993, British journal of pharmacology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
March 1993, British journal of pharmacology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
June 2003, Journal of anatomy,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
November 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
July 1989, Journal of molecular and cellular cardiology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
January 1983, Journal of cardiovascular pharmacology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
August 1997, Cardiovascular research,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
January 1988, The Journal of physiology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
January 1996, Journal of cardiovascular pharmacology,
H Honjo, and T Watanabe, and K Kamiya, and I Kodama, and J Toyama
September 1989, British journal of pharmacology,
Copied contents to your clipboard!