Bacteriophage T4 late gene expression: overlapping promoters direct divergent transcription of the base plate gene cluster. 1989

V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
International Institute of Genetics and Biophysics, Naples, Italy.

Eight 5' ends of RNA molecules which encompass the bacteriophage T4 base plate late genes 51 to 26 region have been mapped by S1 nuclease protection and reverse transcription within a 246-bp DNA segment. Two of eight 5' ends are initiated at two absolutely conserved late promoter sites, P51 and P26a, that direct RNA synthesis on opposite strands. These two promoters share four of eight promoter sequence base pairs. A third 5' end arises from another promoter, P26b, which shows one base pair mismatch with respect to the absolutely conserved -10 sequence. All the other 5' ends arise from RNA processing and/or degradation. Since no other late transcription promoter sites were found within the base plate cluster sequence, we propose that the two overlapping late promoters, P51 and P26a, direct the expression of the T4 base plate gene cluster, included between map coordinates 114,000 and 121,038: P51 directs the transcription of genes 51, 27, 28, 29, 48, and 54 on the rDNA strand and P26a the transcription of genes 26 and 25 on the /DNA strand. This peculiar promoter configuration might account for the low level of transcription of these late genes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
March 1991, Molecular & general genetics : MGG,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
February 1981, Nucleic acids research,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
January 1982, The EMBO journal,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
January 1990, Biomedical science,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
March 1981, Journal of molecular biology,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
July 1981, Journal of virology,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
August 1983, Gene,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
September 1976, Proceedings of the National Academy of Sciences of the United States of America,
V Scarlato, and A Storlazzi, and S Gargano, and A Cascino
January 1990, Molekuliarnaia biologiia,
Copied contents to your clipboard!