Current status of tolerance in kidney transplantation. 2016

Sindhu Chandran, and Sandy Feng
aDivision of Nephrology, Department of Medicine bDivision of Transplantation, Department of Surgery, University of California San Francisco (UCSF), San Francisco, California, USA.

The attainment of tolerance remains a highly desirable goal in recipients of kidney transplants. Achievement of this goal would extend graft survival and eradicate toxicities related to long-term immunosuppression. Understanding mechanisms of tolerance and strategies to induce tolerance - their risk/benefit profiles - is essential for future success. Mechanistic studies of spontaneously tolerant kidney transplant recipients have uncovered potential roles for B or regulatory T cells, or both, in the maintenance of tolerance. Mixed hematopoietic chimerism has been the most commonly used approach to induce tolerance. Distinct protocols at three major transplant centers have led to successful withdrawal of immunosuppression in a subset of living donor kidney transplant recipients at the expense of complications such as infections and graft versus host disease. The addition of regulatory cell therapies to tolerance induction protocols could enhance success while minimizing complications. This review summarizes the features of spontaneous tolerance in kidney transplant recipients, the results of clinical trials of tolerance induction in the context of living donor kidney transplant, and potential measures to improve the safety and efficacy of tolerance induction strategies.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D016030 Kidney Transplantation The transference of a kidney from one human or animal to another. Grafting, Kidney,Renal Transplantation,Transplantation, Kidney,Transplantation, Renal,Kidney Grafting,Kidney Transplantations,Renal Transplantations,Transplantations, Kidney,Transplantations, Renal
D046528 Chimerism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from different individuals. This contrasts with MOSAICISM in which the different cell populations are derived from a single individual. Microchimerism
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

Sindhu Chandran, and Sandy Feng
January 1972, Khirurgiia,
Sindhu Chandran, and Sandy Feng
November 1972, Wiener medizinische Wochenschrift (1946),
Sindhu Chandran, and Sandy Feng
July 1963, Fukuoka igaku zasshi = Hukuoka acta medica,
Sindhu Chandran, and Sandy Feng
January 1970, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden,
Sindhu Chandran, and Sandy Feng
February 2001, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
Sindhu Chandran, and Sandy Feng
April 2016, Fukuoka igaku zasshi = Hukuoka acta medica,
Sindhu Chandran, and Sandy Feng
January 2014, International reviews of immunology,
Sindhu Chandran, and Sandy Feng
January 1970, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden,
Sindhu Chandran, and Sandy Feng
October 2020, International journal of surgery (London, England),
Sindhu Chandran, and Sandy Feng
April 1994, Transplantation proceedings,
Copied contents to your clipboard!