Kinetics of voltage-induced conductance increases in the outer mitochondrial membrane. 1989

K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
Department of Biological Sciences, State University of New York, Albany 12222.

The kinetics of the increase in conductance in the outer mitochondrial membrane induced by patch-clamping at various negative potentials (pipette inside negative) are reported. The changes are biphasic, a rapid increase is followed by a slowly developing larger change. The results can be predicted by a model in which an initial activation of channels is followed by their assembly into highly conducting channels. The model suggests that five to seven activated subunits form each high-conductance channel.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
October 1985, Biochemical medicine,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
August 2010, The Journal of biological chemistry,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
December 2014, Biological chemistry,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
June 2018, Free radical biology & medicine,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
January 1995, Journal of structural biology,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
August 1989, Journal of bioenergetics and biomembranes,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
February 1991, European journal of biochemistry,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
September 1962, Biophysical journal,
K W Kinnally, and H Tedeschi, and C A Mannella, and H L Frisch
August 1972, Biochemistry,
Copied contents to your clipboard!