The organization of the mouse satellite DNA at centromeres. 1989

A Joseph, and A R Mitchell, and O J Miller
Department of Molecular Biology and Genetics, Wayne State University, Detroit, Michigan 48201.

The mouse genome contains a major and a minor satellite DNA family of repetitive DNA sequences. The use of 5-azacytidine has allowed us to demonstrate that these satellite DNAs are organized in two separate domains at the centromeres of mouse chromosomes. The minor satellite is closer to the short arms of the acrocentric chromosomes than the major satellite. The major satellite is farther away, flanking the minor satellite and adjacent to the euchromatic long arm of each mouse chromosome. At the level of resolution afforded by the in situ hybridization technique it would appear that the organization of the centromeric domain of the mouse is similar to that in man. That is, both contain two repetitive DNA sequence families arranged in major blocks.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D006570 Heterochromatin The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE. Heterochromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Joseph, and A R Mitchell, and O J Miller
February 2024, Genome biology,
A Joseph, and A R Mitchell, and O J Miller
July 2023, bioRxiv : the preprint server for biology,
A Joseph, and A R Mitchell, and O J Miller
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
A Joseph, and A R Mitchell, and O J Miller
April 2022, Genome research,
A Joseph, and A R Mitchell, and O J Miller
July 2019, Genes to cells : devoted to molecular & cellular mechanisms,
A Joseph, and A R Mitchell, and O J Miller
January 1971, Chromosoma,
A Joseph, and A R Mitchell, and O J Miller
January 1981, Acta biologica Academiae Scientiarum Hungaricae,
A Joseph, and A R Mitchell, and O J Miller
August 1997, Human molecular genetics,
A Joseph, and A R Mitchell, and O J Miller
July 1977, Journal of the National Cancer Institute,
Copied contents to your clipboard!