We have used the phenomenon of position-dependent growth stimulation, brought about by the confrontation of cells with dissimilar positional values, to reveal the organization of positional information in the center of the upper and lower arms of axolotls. When either humerus or radius was transplanted into either dorsal or posterior positions, extra growth leading to the formation of supernumerary digits occurred following amputation through the graft. However, transplants of humerus or radius into anterior or ventral positions did not lead to the formation of any additional digits. The ulna by contrast was capable of stimulating supernumerary digit formation when transplanted into anterior, posterior, dorsal, or ventral positions. We interpret these results to indicate that the humerus and radius are surrounded by symmetrically arranged anterior and ventral positional values, whereas the ulna is surrounded by a complete asymmetrical set of angular positional values. We use our proposed arrangement for the positional information in the limb center to explain a number of previous experimental findings. In addition, we provide an explanation, in terms of the underlying positional information, for the structural and developmental relationships between the different skeletal elements of the vertebrate limb, and in particular for the anatomical pattern known as Gregory's pyramid.