TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. 2017

Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia.

Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077294 Receptor, Transforming Growth Factor-beta Type II A transmembrane serine-threonine kinase that forms a heteromeric complex with TYPE I TGF-BETA RECEPTORS when bound to TGF-BETA. This receptor complex regulates a variety of physiological and pathological processes including CELL CYCLE ARREST; CELL PROLIFERATION; CELL DIFFERENTIATION; WOUND HEALING; EXTRACELLULAR MATRIX production, immunosuppression and ONCOGENESIS. TGF-beta Type II Receptor,TGF-beta Type II Receptors,TGFBR2,TbetaR-II Kinase,Transforming Growth Factor-beta Type II Receptor,Transforming Growth Factor-beta Type II Receptors,Type II TGF-beta Receptor,Type II TGF-beta Receptors,Kinase, TbetaR-II,Receptor, Transforming Growth Factor beta Type II,TGF beta Type II Receptor,TGF beta Type II Receptors,TbetaR II Kinase,Transforming Growth Factor beta Type II Receptor,Transforming Growth Factor beta Type II Receptors,Type II TGF beta Receptor,Type II TGF beta Receptors
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D051377 Actin-Related Protein 2 A PROFILIN binding domain protein that is part of the Arp2-3 complex. It is related in sequence and structure to ACTIN and binds ATP. ACTR2 Protein,Arp2 Protein,Actin Related Protein 2
D051900 Smad3 Protein A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. Activated Smad3 can bind directly to DNA, and it regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling. Madh3 Protein

Related Publications

Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
August 1998, Biochemical and biophysical research communications,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
August 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
October 2001, Cancer gene therapy,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
September 2007, Biochemical pharmacology,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
January 2002, Cancer biology & therapy,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
February 2010, Carcinogenesis,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
January 2015, The AAPS journal,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
December 2002, Journal of medicinal chemistry,
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
June 1998, Journal of immunology (Baltimore, Md. : 1950),
Lucy Cassar, and Craig Nicholls, and Alex R Pinto, and Ruping Chen, and Lihui Wang, and He Li, and Jun-Ping Liu
September 2019, Journal of tissue engineering and regenerative medicine,
Copied contents to your clipboard!