Centrifugal innervation of the lamprey retina. Light- and electron microscopic and electrophysiological investigations. 1989

N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
Laboratory of Evolution of Neuronal Interactions, Sechenov Institute Academy of Sciences, Leningrad, U.S.S.R.

Centrifugal fibers and their synaptic connections were studied in retinas of the lamprey Lampetra fluviatilis. The morphological analysis of retinofugal and retinopetal elements was performed after their horseradish peroxidase (HRP) filling through either the cut optic nerve in isolated retina preparations or after intracerebral HRP injections. In flat-mounted retinas, labeled ganglion cell bodies with their dendritic arborizations as well as centrifugal axons were found. The topography of labeled ganglion cell bodies and fibers in semi-thin plastic sections is described. The electron microscopic analysis revealed that the centrifugal terminals synapse either upon unlabeled somata or profiles containing synaptic vesicles (PCSVs). In more rare cases these boutons seem to establish synaptic contacts on ganglion cell dendrites. The target cell bodies were located within the inner part of the inner nuclear layer, whereas postsynaptic dendrites and PCSVs were mainly observed in the outer portion of the internal synaptic layer. Stimulation of the optic nerve in isolated retinas produced antidromic responses in 23 neurons and in 9 of these cells, an antidromic spike was followed by a postsynaptic potential (PSP). Ten cells yielded no antidromic response, but showed PSPs sometimes associated with spikes. The morphological and physiological evidence obtained indicate that these PSP-generating cells were activated synaptically by centrifugal fibers and that in the lamprey retina, these fibers make contacts either with dendrites or somata of amacrine cells and probably with ganglion cell dendrites.

UI MeSH Term Description Entries
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
January 1989, Zhurnal evoliutsionnoi biokhimii i fiziologii,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
October 1973, Folia morphologica,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
January 1971, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
January 1980, Vestnik oftalmologii,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
April 1981, The Anatomical record,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
January 1995, Visual neuroscience,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
September 1977, Clinical and experimental dermatology,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
March 1990, The Journal of comparative neurology,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
April 1996, Neuroscience letters,
N P Vesselkin, and J Repérant, and N B Kenigfest, and J P Rio, and D Miceli, and O V Shupliakov
January 1976, Zhurnal evoliutsionnoi biokhimii i fiziologii,
Copied contents to your clipboard!