The survival of early chick sympathetic neurons in vitro is dependent on a suitable substrate but independent of NGF. 1989

U Ernsberger, and D Edgar, and H Rohrer
Max-Planck-Institut für Psychiatrie, Department of Neurochemistry, Martinsried, Federal Republic of Germany.

The neuronal cell population of lumbosacral sympathetic ganglia from 7-day-old chick embryos is characterized by a high proportion of cells with the ability to proliferate in culture (Rohrer and Thoenen, 1987). It is now demonstrated that neither proliferation nor survival of these neurons depend on the presence of nerve growth factor (NGF). However, neuronal survival did depend on the culture substrate used: on laminin, E7 neurons survived and their number increased due to proliferation, whereas on fibronectin (FN) or a substrate of molecules from heart cell-conditioned medium (HCM) a significant number of the cells died during early culture periods. Less than 70 and 50% of the number of neurons surviving on a laminin substrate were found on FN and HCM, respectively, after 3 days in culture. Although NGF did not affect neuronal survival, a small increase in neurite extension on these substrates was observed in the presence of NGF. Furthermore, although NGF did not prevent neuronal death after extended culture periods, this could be prevented by elevated extracellular potassium concentrations. Sympathetic neurons of E8 chick embryos however showed a strikingly different response to NGF compared with those of E7: whereas neuronal survival on laminin was not influenced by NGF, a significant effect of NGF on survival and on neurite extension was observed for E8 neurons on a HCM substrate. In contrast to cells from E7 and E8 embryos, the majority of neurons from E11 chick embryos required NGF for survival even on a laminin substrate as described previously (D. Edgar, R. Timpl, and H. Thoenen, 1984, EMBO J. 3, 1463-1468). These results demonstrate that while sympathetic neurons from E7 chick embryos do not depend on the soluble neurotrophic factor NGF for survival in vitro, they are dependent on molecules of the extracellular matrix. With increasing age, the survival requirements demonstrated in vitro change toward the classical pattern of NGF dependency. Low amounts of laminin-like immunoreactivity were shown to be present in sympathetic ganglia of E7 chick embryos which were then shown to increase as development proceeded. These data indicate that laminin may play a role in the survival and development of chick sympathetic neurons not only in vitro, but also in vivo.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion

Related Publications

U Ernsberger, and D Edgar, and H Rohrer
July 1991, Development (Cambridge, England),
U Ernsberger, and D Edgar, and H Rohrer
January 1991, Research communications - Institute for Fermentation, Osaka,
U Ernsberger, and D Edgar, and H Rohrer
June 1999, Developmental biology,
U Ernsberger, and D Edgar, and H Rohrer
April 2001, American journal of physiology. Heart and circulatory physiology,
U Ernsberger, and D Edgar, and H Rohrer
February 1990, Neuroscience letters,
U Ernsberger, and D Edgar, and H Rohrer
October 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!