Kinetic Measurements for Enzyme Immobilization. 2017

Michael J Cooney
Hawaii Natural Energy Institute, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East-west Rd., Honolulu, HI, 96822, USA. mcooney@hawaii.edu.

Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004800 Enzymes, Immobilized Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields. Immobilized Enzymes,Enzyme, Immobilized,Immobilized Enzyme
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D055664 Electrochemical Techniques The utilization of an electrical current to measure, analyze, or alter chemicals or chemical reactions in solution, cells, or tissues. Electrochemical Technics,Electrochemical Technic,Electrochemical Technique,Technic, Electrochemical,Technics, Electrochemical,Technique, Electrochemical,Techniques, Electrochemical
D057075 Enzyme Assays Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay

Related Publications

Michael J Cooney
September 1970, Hippokrates,
Michael J Cooney
June 1992, Anais da Academia Brasileira de Ciencias,
Michael J Cooney
February 2023, Molecules (Basel, Switzerland),
Michael J Cooney
January 2012, Applied microbiology and biotechnology,
Michael J Cooney
January 2011, Methods in molecular biology (Clifton, N.J.),
Michael J Cooney
January 2017, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!