ATP hydrolysis by ischemic mitochondria. 1989

J B Classen, and W J Mergner, and M Costa
Department of Pathology, University of Maryland School of Medicine, Baltimore 21201.

Cellular ATP levels are determined by the rates of ATP production and ATP hydrolysis. Both phenomena are affected by ischemia. Mitochondrial enzymes are damaged, inhibiting this organelle's ability to make ATP. Mitochondria are also uncoupled by ischemia and have the ability to hydrolyze ATP. We designed a series of experiments to determine whether decreased production or increased hydrolysis of ATP was the primary effect of mitochondrial damage. Rat hearts were subjected to 45 min of warm ischemia in order to induce irreversible cell damage. ATP or ADP was injected into cuvettes containing mitochondria isolated from normal myocardium or myocardium damaged by ischemia. Luciferin-luciferase, which fluoresces in the presence of ATP, was also added to the tubes as an indicator of ATP levels. Mixtures of uncoupled and coupled mitochondria were made and compared with the mitochondria damaged by ischemia. The results showed that mitochondria damaged by prolonged ischemia hydrolyze ATP more rapidly than normal mitochondria; however, normal mitochondria can easily compensate for increased ATP hydrolysis when in mixture with equal amounts of uncoupled mitochondria. These data suggests that the low cellular levels of ATP following irreversible ischemia are primarily due to decreased ATP synthesis and not to increased hydrolysis.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013385 Succinate Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate
D014475 Uncoupling Agents Chemical agents that uncouple oxidation from phosphorylation in the metabolic cycle so that ATP synthesis does not occur. Included here are those IONOPHORES that disrupt electron transfer by short-circuiting the proton gradient across mitochondrial membranes. Agents, Uncoupling

Related Publications

J B Classen, and W J Mergner, and M Costa
December 1956, Acta physiologica et pharmacologica Neerlandica,
J B Classen, and W J Mergner, and M Costa
May 1977, Proceedings of the National Academy of Sciences of the United States of America,
J B Classen, and W J Mergner, and M Costa
June 1973, FEBS letters,
J B Classen, and W J Mergner, and M Costa
May 1991, Archives of biochemistry and biophysics,
J B Classen, and W J Mergner, and M Costa
March 1993, FEBS letters,
J B Classen, and W J Mergner, and M Costa
January 1987, Doklady Akademii nauk SSSR,
J B Classen, and W J Mergner, and M Costa
March 2024, The Journal of biological chemistry,
J B Classen, and W J Mergner, and M Costa
October 1975, The Journal of biological chemistry,
J B Classen, and W J Mergner, and M Costa
January 1975, Biokhimiia (Moscow, Russia),
J B Classen, and W J Mergner, and M Costa
August 2002, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!