Comparison of clonogenic cell survival and DNA damage induced by 188Re and X-rays in rat thyroid cells. 2017

Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
Dr. rer.medic. Roswitha Runge, Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Tel. +49 (0) 351 458 5481, Fax +49 (0) 351 458 5347, E-Mail: Roswitha.Runge@uniklinikum-dresden.de.

OBJECTIVE Ionizing radiation produces DNA lesions among which DNA double strand breaks (DSB) are the most critical events. Radiation of various energy types might differ in their biological effectiveness. Here, we compared cell survival and DNA damage induced by 188Re and X-rays using γH2AX foci as a measure of DSB. The correlation between survival and residual foci was also analyzed. METHODS PCCl3 cells were irradiated with 200 kV X-rays (1.2 Gy/min) or 0.5-25 MBq/ml 188Re (1 h irradiation) achieving doses up to 10 Gy. By blocking of sodium iodide symporter (NIS) essentially extracellular activity could be guaranteed. Survival fractions (SF) were detected by colony forming assay. Initial and residual γH2AX foci (15 min and 24 h after irradiation) were assessed by immunostaining. The relationship between SF and residual radiation induced γH2AX foci (RIF) was evaluated by Spearman and Pearson correlation tests. RESULTS We did not find significant differences between the survival curves in terms of the radiation quality. The D37 values were 4.6 Gy and 4.2 Gy for 188Re or X-ray, respectively. The initial foci numbers were in the same range for 188Re and X-ray, but higher levels of residual foci persisted after X-rays in comparison to 188Re (1 GyX-ray 6.5 ± 0.2; 1 GyRe-188 4.8 ± 0.2 RIF). Accordingly, for 188Re a higher extent of DSB repair was found. The Spearman test revealed a significant (p < 0.01) correlation between SF and residual RIF for both radiation modalities. CONCLUSIONS No differences in terms of radiation were found for SF and initial foci. However, residual foci were lower for 188Re than for X-rays. A prediction of SF by residual foci should consider the properties of the radiation qualities that influence foci removal and DSB repair.

UI MeSH Term Description Entries
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012211 Rhenium A metal, atomic number 75, atomic weight 186.207, symbol Re.

Related Publications

Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
November 1989, Radiation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
December 1999, Journal of radiation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
November 1989, Radiation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
September 1970, Radiation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
October 1996, International journal of radiation biology,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
January 1970, Doklady Akademii nauk SSSR,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
June 2002, Radiation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
November 2012, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
February 1982, Mutation research,
Roswitha Runge, and Jana Arlt, and Liane Oehme, and Robert Freudenberg, and Jörg Kotzerke
May 2005, Radiation research,
Copied contents to your clipboard!