Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. 1978

A P Laudano, and R F Doolittle

A series of small peptides corresponding to the amino termini of the fibrin alpha- and beta-chains has been synthesized. The peptides glycyl-L-prolyl-L-arginyl-L-proline and glycyl-L-prolyl-L-arginylsarcosine are potent inhibitors of fibrin polymerization. Moreover, these peptides have a natural stability stemming from their inherent resistance to proteolysis because of the involvement of amino acids in each of their peptide bonds. The peptide glycyl-L-prolyl-L-arginyl-L-proline binds to fibrinogen and to fragment D, in both cases with an association constant of approximately 5 x 10(4); it does not bind to fragment E. The number of binding sites is two for fibrinogen and one for fragment D. The tripeptide glycyl-L-prolyl-L-arginine binds less tightly and is less than half as effective in preventing polymerization. The peptide glycyl-L-histidyl-L-arginyl-L-proline, which corresponds exactly to the amino terminus of the fibrin beta-chain, does not inhibit the aggregation of fibrin monomers under the conditions used. It does bind weakly to fibrinogen, however, suggesting the involvement of sites other than those binding the alpha-chain analogues. Various other peptides were found not to inhibit polymerization; these included glycine-L-proline, L-prolyl-L-arginine and glycyl-L-prolyl-L-seryl-L-proline. The last-named corresponds to the serine/arginine amino acid replacement previously reported for a defective human fibrinogen.

UI MeSH Term Description Entries
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D005338 Fibrin Fibrinogen Degradation Products Soluble protein fragments formed by the proteolytic action of plasmin on fibrin or fibrinogen. FDP and their complexes profoundly impair the hemostatic process and are a major cause of hemorrhage in intravascular coagulation and fibrinolysis. Antithrombin VI,Fibrin Degradation Product,Fibrin Degradation Products,Fibrin Fibrinogen Split Products,Degradation Product, Fibrin,Degradation Products, Fibrin,Product, Fibrin Degradation
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A P Laudano, and R F Doolittle
December 1983, Science (New York, N.Y.),
A P Laudano, and R F Doolittle
August 1986, Thrombosis research,
A P Laudano, and R F Doolittle
January 1992, Seminars in thrombosis and hemostasis,
A P Laudano, and R F Doolittle
January 1977, Acta clinica Belgica,
A P Laudano, and R F Doolittle
January 1958, Acta biologica et medica Germanica,
A P Laudano, and R F Doolittle
November 2011, Biochemistry,
A P Laudano, and R F Doolittle
July 1997, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis,
A P Laudano, and R F Doolittle
January 1963, Ukrains'kyi biokhimichnyi zhurnal,
A P Laudano, and R F Doolittle
June 1983, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!