Steady flow through a double converging-diverging tube model for mild coronary stenoses. 1989

S C van Dreumel, and G D Kuiken
Laboratory for Aero- and Hydrodynamics, Delft University of Technology, The Netherlands.

Velocity profiles and the pressure drop across two mild (62 percent) coronary stenoses in series have been investigated numerically and experimentally in a perspex-tube model. The mean flow rate was varied to correspond to a Reynolds number range of 50-400. The pressure drop across two identical (62 percent) stenoses show that for low Reynolds numbers the total effect of two stenoses equals that of two single stenoses. A reduction of 10 percent is found for the higher Reynolds numbers investigated. Numerical and experimental results obtained for the velocity profiles agree very well. The effect of varying the converging angle of a single mild (62 percent) coronary stenosis on the fluid flow has been determined numerically using a finite element method. Pressure-flow relation, especially with respect to relative short stenoses, is discussed.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

S C van Dreumel, and G D Kuiken
January 1976, Journal of biomechanics,
S C van Dreumel, and G D Kuiken
January 1979, Journal of biomechanics,
S C van Dreumel, and G D Kuiken
January 1989, Journal of biomechanics,
S C van Dreumel, and G D Kuiken
January 1976, Journal of biomechanics,
S C van Dreumel, and G D Kuiken
April 2009, Biomicrofluidics,
S C van Dreumel, and G D Kuiken
November 1990, Journal of biomechanical engineering,
S C van Dreumel, and G D Kuiken
January 1993, International journal of bio-medical computing,
Copied contents to your clipboard!