Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. 1989

E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
I. Physiologisches Institut der Universität Heidelberg, Federal Republic of Germany.

The effect of peripheral chemoreceptor activation on inspiratory and postinspiratory medullary neurons was investigated using intracellular recording techniques. Peripheral chemoreceptors were activated by injecting CO2 saturated 1 N bicarbonate solution into the lingual artery or by electrically stimulating the carotid sinus nerve. Injections of 20-300 microliters bicarbonate solution evoked changes in respiratory frequency and in peak phrenic nerve discharge. The membrane potential of inspiratory alpha neurons, whether bulbospinal or not and independent of their anatomic location, was decreased during inspiration. A sequence of compound excitatory and inhibitory effects were observed when the stimulus was given during the postinspiratory and expiratory phases of the respiratory cycle. Inspiratory beta- and late-inspiratory neurons, however, were inhibited by peripheral chemoreceptor activation. Postinspiratory neurons were strongly activated during postinspiration. Neither class of respiratory neurons were shown to receive direct synaptic inputs from the peripheral chemoreceptors as tested by electrical stimulation of the carotid sinus nerve and signal averaging of the respiratory neuron membrane potential. The experiments revealed differential influences of afferent chemoreceptor activity on various components of the respiratory network. We conclude that chemoreceptor afferents activate non-respiratory modulated medullary neurons which, in turn, activate or inhibit various neurons of the medullary respiratory control network. The responses of each type of respiratory neuron to chemoreceptors afferents may then be considered in the context of this direct interaction as well as the network interactions of the various cells.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell

Related Publications

E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
November 1984, The American journal of physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
June 1998, Clinical and experimental pharmacology & physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
June 1994, The American journal of physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
September 1984, Respiration physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
June 1975, Respiration physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
April 2006, The Journal of physiology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
July 1984, European journal of pharmacology,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
November 1985, Brain research,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
October 1986, Neuroscience letters,
E E Lawson, and D W Richter, and D Ballantyne, and P M Lalley
December 1997, The American journal of physiology,
Copied contents to your clipboard!