Crystal structure of a phosphoribosyl anthranilate isomerase from the hyperthermophilic archaeon Thermococcus kodakaraensis. 2016

Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.

A phosphoribosyl anthranilate isomerase, TkTrpF, from Thermococcus kodakaraensis was expressed in Escherichia coli and purified to homogeneity. TkTrpF was crystallized and its structure was determined by molecular replacement in two different space groups (C2 and P1) using data to 1.85 and 1.75 Å resolution, respectively. TkTrpF belongs to the class of TIM-barrel proteins. Structural comparison with other phosphoribosyl anthranilate isomerases (TrpFs) showed the highest structural similarity to Pyrococcus furiosus TrpF. Similarly to P. furiosus TrpF, TkTrpF is a monomer in solution, in contrast to other thermophilic enzymes, which exist as functional dimers. Although in space group P1 TkTrpF crystallizes with two molecules in the asymmetric unit, the interface is highly improbable in solution. Potential factors for the thermostability of TkTrpF were attributed to an increase in helical structure, an increased number of charged residues and an increase in the number of salt bridges.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000072756 Protein Conformation, alpha-Helical A secondary structure of proteins that is a right-handed helix or coil, where each amino (N-H) group of the peptide backbone contributes a hydrogen bond to the carbonyl(C alpha-Helical Conformation, Protein,alpha-Helical Protein Conformation,alpha-Helical Structures,alpha-Helices,alpha-Helix,Conformation, Protein alpha-Helical,Conformation, alpha-Helical Protein,Conformations, Protein alpha-Helical,Conformations, alpha-Helical Protein,Protein Conformation, alpha Helical,Protein Conformations, alpha-Helical,alpha Helical Conformation, Protein,alpha Helical Protein Conformation,alpha Helical Structures,alpha Helices,alpha Helix,alpha-Helical Conformations, Protein,alpha-Helical Protein Conformations,alpha-Helical Structure
D000072757 Protein Conformation, beta-Strand A secondary structure of proteins where the amino (N-H) groups of a polypeptide backbone, three to ten amino acids in length, establish hydrogen bonds with the carbonyl (C Protein Conformation, beta-Sheet,beta-Pleated Sheet,beta-Sheet,beta-Sheets,beta-Strand,beta-Stranded Structures,beta-Strands,Conformation, beta-Sheet Protein,Conformation, beta-Strand Protein,Conformations, beta-Sheet Protein,Conformations, beta-Strand Protein,Protein Conformation, beta Sheet,Protein Conformation, beta Strand,Protein Conformations, beta-Sheet,Protein Conformations, beta-Strand,Sheet, beta-Pleated,Sheets, beta-Pleated,beta Pleated Sheet,beta Sheet,beta Sheets,beta Strand,beta Stranded Structures,beta Strands,beta-Pleated Sheets,beta-Sheet Protein Conformation,beta-Sheet Protein Conformations,beta-Strand Protein Conformation,beta-Strand Protein Conformations,beta-Stranded Structure
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
June 2005, Biochemical and biophysical research communications,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
July 2009, Journal of biochemistry,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
February 2001, Journal of molecular biology,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
November 2009, Journal of structural biology,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
March 2003, Journal of bacteriology,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
March 2005, Journal of biotechnology,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
January 2010, Genes & genetic systems,
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
May 2005, Archaea (Vancouver, B.C.),
Sumera Perveen, and Naeem Rashid, and Anastassios C Papageorgiou
October 2005, Journal of bacteriology,
Copied contents to your clipboard!