Spatial distribution of pre- and postsynaptic sites of axon terminals in the dorsal horn of the frog spinal cord. 1989

G Székely, and I Nagy, and E Wolf, and P Nagy
Department of Anatomy, University Medical School, Debrecen, Hungary.

Axon terminals which could be interpreted as dorsal root boutons, were photographed from a series of 98 ultrathin sections with a Jeol 100B electron microscope. A total of 13 boutons were recovered for computer reconstruction. Two of them were terminal boutons, eight en passant boutons and three boutons were only partially recovered. All boutons contained multiple synaptic sites (maximum 33 and minimum seven) at which axodendritic and axoaxonic synapses were established. Axodendritic synapses were of the asymmetric type and they were directed toward adjacent dendrites. In axoaxonic synapses, which were of the symmetric type, the boutons were invariably on the postsynaptic side. Among the presynaptic profiles axons with spherical and pleomorphic vesicles and dendrites with flattened vesicles could be discerned. On average, each 2.67-microns2 bouton surface area contained one presynaptic site at which an axodendritic synapse was established, and each 7-microns2 surface area contained one postsynaptic site for an axoaxonic (or dendroaxonic) contact. A tendency of grouping of synaptic sites was observed. Distance measurements between the closest neighbours of all synaptic sites were made in four combinations in boutons with the original and with a random distribution of synaptic sites. The arithmetic mean of distances measured between the presynaptic and the closest postsynaptic sites was almost twice as big as that measured in the reverse direction. The difference between these values became greatly reduced in the case of random distribution. The arithmetic mean of distances between the closest neighbours of presynaptic sites was about the same as that between the closest neighbours of postsynaptic sites. This latter value was considerably increased with randomly distributed synaptic sites. The results suggest a non-random distribution of synaptic sites on the surface of boutons. The analysis of cluster formation of synaptic sites performed with a numerical taxonomy technique revealed that the majority of the 153 synaptic sites were comprised in 27 clusters containing both pre- and postsynaptic sites within the 1-micron similarity level. All postsynaptic sites were within 1 micron of one or more presynaptic sites. On the basis of the assumption that the postsynaptic sites are occupied by inhibitory axoaxonic synapses, it is suggested that the transmitter release from the presynaptic sites can be individually controlled in this structural arrangement. A probable mechanism of this function may be the passive invasion of the bouton by the impulse propagating actively along the dorsal root fibre.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

G Székely, and I Nagy, and E Wolf, and P Nagy
March 2013, Annals of the New York Academy of Sciences,
G Székely, and I Nagy, and E Wolf, and P Nagy
January 1982, Acta biologica Academiae Scientiarum Hungaricae,
G Székely, and I Nagy, and E Wolf, and P Nagy
January 1990, Synapse (New York, N.Y.),
G Székely, and I Nagy, and E Wolf, and P Nagy
December 2007, Brain research,
G Székely, and I Nagy, and E Wolf, and P Nagy
January 2002, Neuroscience,
G Székely, and I Nagy, and E Wolf, and P Nagy
April 2001, The Journal of comparative neurology,
G Székely, and I Nagy, and E Wolf, and P Nagy
January 1973, Anesthesiology,
G Székely, and I Nagy, and E Wolf, and P Nagy
September 1990, Neuroscience letters,
Copied contents to your clipboard!