Induction of class I MHC-restricted, peptide-specific cytolytic T lymphocytes by peptide priming in vivo. 1989

G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
Cytel Corporation, La Jolla, CA 92037.

The present study investigated the possibility that protein Ag fragments in the form of peptides could serve as the priming Ag in the generation of a MHC class I-restricted immune response. Trypsin-digested chicken ovalbumin (OVA-TD) fragments were used as the model Ag. The results demonstrate the peptides within OVA-TD, when injected into C57BL/6 mice, could prime T cells which lysed H-2b Ia-EL4 target cells in an OVA-TD-specific manner. In contrast to priming with OVA-TD, immunization of mice with intact OVA did not lead to generation of CTL against OVA-TD or OVA. Furthermore, target cells sensitized with intact OVA failed to be recognized by OVA-peptide-specific CTL indicating that the target cells serving as APC were unable to generate the relevant peptide determinants recognized by the T cells. These results support the idea that the processing pathway within APC for class I-restricted T cells may differ from that used for class II-restricted T cells. Using OVA-TD-specific CTL clones (phenotypically Thy 1+, CD8+, CD4-, Pgp-1+) isolated from primed animals to screen OVA-TD fractions separated by HPLC, two T cell peptide determinants were identified corresponding to OVA sequences 111-122 and 370-381. Both determinants were recognized by CTL clones in the context of the H-2Db molecule.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
November 1998, Human immunology,
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
July 1988, Journal of immunology (Baltimore, Md. : 1950),
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
December 1986, Journal of immunology (Baltimore, Md. : 1950),
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
March 1998, Journal of immunology (Baltimore, Md. : 1950),
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
July 1996, The Journal of experimental medicine,
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
June 1996, Immunology,
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
March 1998, Vaccine,
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
July 1998, Journal of immunotherapy (Hagerstown, Md. : 1997),
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
April 1986, The Journal of experimental medicine,
G Y Ishioka, and S Colon, and C Miles, and H M Grey, and R W Chesnut
February 1993, Transplantation,
Copied contents to your clipboard!