Epidermal growth factor receptors in spontaneous ovarian granulosa cell tumors of SWR-derived mice. 1989

B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
Jackson Laboratory, Bar Harbor, ME 04609.

Epidermal growth factor (EGF) receptor binding properties were examined in spontaneous ovarian granulosa cell (GC) tumors from SWR and SWR-derived strains of mice. EGF binding was measured at room temperature in tissue homogenates from GC tumors and normal ovaries from adult randomly cycling mice. GC tumor tissue displayed significantly increased EGF binding and 2 receptor populations (R1 and R2). Normal ovarian tissue appeared to have only one receptor population with a dissociation constant (KD) similar to the R1 (high-affinity) receptor in GC tumors. In subsequent experiments, GC tumor and normal granulosa cells from immature mice were analyzed in primary cultures for EGF binding, immunofluorescence microscopy for receptors, and cell proliferation. After 24 hr in culture, the GC tumors bound 10-fold more EGF/micrograms protein than did normal granulosa cells. GC tumor cells, but not normal granulosa cells, showed specific immunofluorescence when reacted with a polyclonal antibody to mouse EGFR. During 96 hr in culture, GC tumor cells, but not normal cells, showed a significant proliferative response to EGF. In conclusion, the EGF binding capacity is markedly increased in GC tumor cells and the proliferation data suggest that this growth factor supports tumor growth in the SWR model system.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005260 Female Females
D006106 Granulosa Cell Tumor A neoplasm composed entirely of GRANULOSA CELLS, occurring mostly in the OVARY. In the adult form, it may contain some THECA CELLS. This tumor often produces ESTRADIOL and INHIBIN. The excess estrogen exposure can lead to other malignancies in women and PRECOCIOUS PUBERTY in girls. In rare cases, granulosa cell tumors have been identified in the TESTES. Cancer of Granulosa Cells,Granulosa Cell Cancer,Cancer, Granulosa Cell,Cancers, Granulosa Cell,Cell Cancer, Granulosa,Cell Cancers, Granulosa,Cells Cancer, Granulosa,Cells Cancers, Granulosa,Granulosa Cell Cancers,Granulosa Cell Tumors,Granulosa Cells Cancer,Granulosa Cells Cancers,Tumor, Granulosa Cell,Tumors, Granulosa Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D066246 ErbB Receptors A family of structurally related cell-surface receptors that signal through an intrinsic PROTEIN-TYROSINE KINASE. The receptors are activated upon binding of specific ligands which include EPIDERMAL GROWTH FACTORS, and NEUREGULINS. EGF Receptor,Epidermal Growth Factor Receptor,Epidermal Growth Factor Receptor Family Protein,Epidermal Growth Factor Receptor Protein-Tyrosine Kinase,ErbB Receptor,HER Family Receptor,Receptor, EGF,Receptor, Epidermal Growth Factor,Receptor, TGF-alpha,Receptor, Transforming-Growth Factor alpha,Receptor, Urogastrone,Receptors, Epidermal Growth Factor-Urogastrone,TGF-alpha Receptor,Transforming Growth Factor alpha Receptor,Urogastrone Receptor,c-erbB-1 Protein,erbB-1 Proto-Oncogene Protein,EGF Receptors,Epidermal Growth Factor Receptor Family Proteins,Epidermal Growth Factor Receptor Kinase,HER Family Receptors,Proto-oncogene c-ErbB-1 Protein,Receptor Tyrosine-protein Kinase erbB-1,Receptor, ErbB-1,Receptors, Epidermal Growth Factor,Epidermal Growth Factor Receptor Protein Tyrosine Kinase,ErbB-1 Receptor,Family Receptor, HER,Family Receptors, HER,Proto oncogene c ErbB 1 Protein,Proto-Oncogene Protein, erbB-1,Receptor Tyrosine protein Kinase erbB 1,Receptor, ErbB,Receptor, ErbB 1,Receptor, HER Family,Receptor, TGF alpha,Receptor, Transforming Growth Factor alpha,Receptors, EGF,Receptors, Epidermal Growth Factor Urogastrone,Receptors, ErbB,Receptors, HER Family,c erbB 1 Protein,c-ErbB-1 Protein, Proto-oncogene,erbB 1 Proto Oncogene Protein

Related Publications

B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
November 1985, Cancer research,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
September 2008, Reproductive sciences (Thousand Oaks, Calif.),
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
November 1986, Journal of the National Cancer Institute,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
April 1997, Gynecologic oncology,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
January 2004, Akusherstvo i ginekologiia,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
January 2005, Akusherstvo i ginekologiia,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
March 1983, The Journal of biological chemistry,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
January 2007, Akusherstvo i ginekologiia,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
January 2007, Akusherstvo i ginekologiia,
B J Tennent, and W G Beamer, and L D Shultz, and E D Adamson
January 2007, Akusherstvo i ginekologiia,
Copied contents to your clipboard!