Triterpenoid saponins with anti-inflammatory activities from Ilex pubescens roots. 2017

Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.

Seven triterpenoid saponins, named ilexsaponin I-O, along with twelve known ones, were isolated from the roots of Ilex pubescens. The structures of all compounds were elucidated by use of extensive spectroscopic methods (IR, HR-ESI-MS, and 1D and 2D NMR). Sugar residues obtained after acid hydrolysis were identified by TLC and HPLC. The in vitro anti-inflammatory effects of the triterpenoid saponins were also evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Among the isolated saponins, seven compounds were shown to inhibit LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, in LPS-stimulated RAW 264.7 cells. Ilexsaponin I and β-d-glucopyranosyl 3-β-[β-d-xylopyranosyl-(1 → 2)-β-d-glucopyranosyloxy]-olea-12-en-28-oate exerted more potent anti-inflammatory effects than the other compounds tested.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D012503 Saponins A type of glycoside widely distributed in plants. Each consists of a sapogenin as the aglycone moiety, and a sugar. The sapogenin may be a steroid or a triterpene and the sugar may be glucose, galactose, a pentose, or a methylpentose. Saponin
D014315 Triterpenes A class of terpenes (the general formula C30H48) formed by the condensation of six isoprene units, equivalent to three terpene units. Triterpene,Triterpenoid,Triterpenoids
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
January 2012, Journal of Asian natural products research,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
June 2018, Molecules (Basel, Switzerland),
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
September 2014, Fitoterapia,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
January 2008, Journal of Asian natural products research,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
October 2012, Planta medica,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
March 1995, Journal of natural products,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
August 1999, Journal of natural products,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
December 1998, Phytochemistry,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
May 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Peng Wu, and Hui Gao, and Jian-Xin Liu, and Liang Liu, and Hua Zhou, and Zhong-Qiu Liu
July 2008, Chemistry & biodiversity,
Copied contents to your clipboard!