Effect of putative neuromodulators on rhythmic buccal motor output in Lymnaea stagnalis. 1989

M A Kyriakides, and C R McCrohan
Department of Physiological Sciences, University of Manchester, United Kingdom.

The effects of a variety of neuromodulator substances on rhythmic motor output and activity in neurons in the feeding circuitry of Lymnaea stagnalis were examined. Each neuromodulator produced a unique combination of effects at different levels in the network: i.e., pattern-generating interneurons (N1, N2, and N3), an identified higher-order interneuron (cerebral giant cell, CGC), and buccal motoneurons. 5-Hydroxytryptamine, acetylcholine, and FMRFamide all inhibited rhythmic motor activity. However, this was achieved in different ways. Dopamine changed the nature of rhythmic activity from one in which N2 interneuronal activity was predominant ("N2 rhythm") to a feeding rhythm. Dopamine was the only substance capable of activating the feeding rhythm. Activity in the CGC was increased by 5-hydroxytryptamine, dopamine, and acetylcholine and reduced by FMRFamide. Differential responses in buccal motoneurons were also observed. The results are discussed in relation to previous work on other species and also in terms of the selection of different patterns of motor output by neuromodulators.

UI MeSH Term Description Entries
D008195 Lymnaea A genus of dextrally coiled freshwater snails that includes some species of importance as intermediate hosts of parasitic flukes. Lymnea,Lymnaeas,Lymneas
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015306 Biogenic Monoamines Biogenic amines having only one amine moiety. Included in this group are all natural monoamines formed by the enzymatic decarboxylation of natural amino acids. Monoamines, Biogenic
D019835 FMRFamide A molluscan neuroactive peptide which induces a fast excitatory depolarizing response due to direct activation of amiloride-sensitive SODIUM CHANNELS. (From Nature 1995; 378(6558): 730-3) FMRF,FMRF-NH2,FMRF-amide,FMRFamide, (D-Arg)-Isomer,FMRFamide, (D-Met)-Isomer,FMRFamide, (D-Phe)-Isomer,FMRFamide, (D-phenylalanine)-Isomer,Phe-Met-Arg-Phe-NH2,Phe-Met-Arg-Phe-amide,FMRF NH2,FMRF amide,Phe Met Arg Phe amide
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M A Kyriakides, and C R McCrohan
November 1987, Behavioral and neural biology,
M A Kyriakides, and C R McCrohan
June 1993, Neuroreport,
M A Kyriakides, and C R McCrohan
January 2001, Zhurnal evoliutsionnoi biokhimii i fiziologii,
M A Kyriakides, and C R McCrohan
December 1999, Journal of neurophysiology,
M A Kyriakides, and C R McCrohan
November 1974, Journal of neurophysiology,
M A Kyriakides, and C R McCrohan
December 1996, Neuroscience,
M A Kyriakides, and C R McCrohan
January 1987, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
M A Kyriakides, and C R McCrohan
May 1984, The Journal of experimental biology,
M A Kyriakides, and C R McCrohan
January 1983, Biomedica biochimica acta,
M A Kyriakides, and C R McCrohan
December 2007, The Journal of experimental biology,
Copied contents to your clipboard!