Cultured astrocytes and neurons synthesize and secrete carboxypeptidase E, a neuropeptide-processing enzyme. 1989

M H Vilijn, and B Das, and J A Kessler, and L D Fricker
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461.

Carboxypeptidase E (EC 3.4.17.10) is a carboxypeptidase B-like enzyme associated with the biosynthesis of many peptide hormones and neurotransmitters. Media collected from cultured astrocytes contain a carboxypeptidase E-like activity. Cultured astrocytes secrete approximately 73% of their cellular level of carboxypeptidase E per hour, and secretion is not substantially influenced by 35 mM KCl. In contrast, neurons secrete only 29% of their cellular carboxypeptidase E per hour, but secretion increases to 86% on stimulation with 35 mM KCl. Secretion of carboxypeptidase E activity from both neuronal and astrocyte cultures is relatively selective; neither acid phosphatase or acetylglucosaminidase is secreted in appreciable amounts. Cultured neurons and astrocytes express a carboxypeptidase E mRNA of a similar size. The levels of this mRNA differ in astrocytes cultured from different brain regions, with high levels in striatal, cortical, hippocampal, and hypothalamic astrocytes and low levels in cerebellar astrocytes. The level of carboxypeptidase E mRNA in hypothalamic astrocyte cultures is four- to fivefold higher than the level in hypothalamic neuronal cultures. These results indicate that cultured astrocytes express carboxypeptidase E mRNA and enzymatic activity and thus contain one of the enzymes required in the biosynthesis of many peptide hormones and neurotransmitters.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M H Vilijn, and B Das, and J A Kessler, and L D Fricker
January 1994, Archives of insect biochemistry and physiology,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
November 1992, Brain research,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
November 1993, Journal of neurochemistry,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
October 1993, Journal of neurochemistry,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
April 1989, Molecular endocrinology (Baltimore, Md.),
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
June 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
February 1996, Biochimica et biophysica acta,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
January 1992, Brain research,
M H Vilijn, and B Das, and J A Kessler, and L D Fricker
June 1977, The Journal of experimental medicine,
Copied contents to your clipboard!