Specific down-regulation of the alpha-bungarotoxin binding component on chick autonomic neurons by ciliary neuronotrophic factor. 1989

S W Halvorsen, and D K Berg
Department of Biology, University of California, San Diego, La Jolla 92093.

Chick ciliary ganglion neurons have a cholinergic membrane component that binds alpha-bungarotoxin with high affinity but has no known function. The component is different from the nicotinic ACh receptor on the neurons that mediates cholinergic transmission through the ganglion. Ciliary neuronotrophic factor (CNTF) has been shown to enhance the survival of ciliary ganglion neurons in cell culture and has been postulated to act as a target-derived trophic factor for the neurons in vivo. We show here that a factor indistinguishable from CNTF specifically down-regulates alpha-bungarotoxin binding sites on the neurons while increasing cell growth and the number of ACh receptors on the cells. Similar effects, though reduced in magnitude, are seen with chick sympathetic neurons. CNTF has no effect on the number of ACh receptors found on chick myotubes in culture. The down-regulation of alpha-bungarotoxin binding sites on neurons caused by CNTF occurs with a half-time of about 19 hr and is largely reversed within a 4 d period following CNTF removal. It is distinct from the down-regulation caused by cholinergic agonists. Nerve growth factor and fibroblast growth factor have no apparent effect on the number of alpha-bungarotoxin binding sites on the neurons, though fibroblast growth factor does stimulate neuronal growth. The results indicate that the effects of CNTF on the alpha-bungarotoxin binding component are both novel for a growth factor and specific, and they suggest a relationship between the component and the regulation of growth by the target tissue.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001341 Autonomic Nervous System The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS. Vegetative Nervous System,Visceral Nervous System,Autonomic Nervous Systems,Nervous System, Autonomic,Nervous System, Vegetative,Nervous System, Visceral,Nervous Systems, Autonomic,Nervous Systems, Vegetative,Nervous Systems, Visceral,System, Autonomic Nervous,System, Vegetative Nervous,System, Visceral Nervous,Systems, Autonomic Nervous,Systems, Vegetative Nervous,Systems, Visceral Nervous,Vegetative Nervous Systems,Visceral Nervous Systems

Related Publications

S W Halvorsen, and D K Berg
November 1984, Journal of neurochemistry,
S W Halvorsen, and D K Berg
February 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S W Halvorsen, and D K Berg
January 1982, Journal of neuroscience research,
S W Halvorsen, and D K Berg
November 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!