Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. 1989

J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
Mental Health Research Institute, University of Michigan, Ann Arbor 48109.

Expression of mRNAs coding for the ACTH secretagogues corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) was examined in the hypothalamic paraventricular nucleus (PVN) of rats bearing hippocampal lesions. Either total hippocampectomy (HPX) or extirpation of the dorsal hippocampus (DHPX) precipitated a 4-fold increase in CRF mRNA expression relative to sham-operated controls (SHAM), as determined by semiquantitative in situ hybridization histochemistry. AVP mRNA was localized to individual parvocellular neurons of the medial parvocellular division of the PVN in only the HPX and DHPX groups, consistent with enhanced production of AVP message in this neuronal population subsequent to hippocampal damage. HPX did not affect AVP mRNA content in magnocellular divisions of PVN. Plasma beta-endorphin levels were significantly elevated in the HPX and DHPX groups relative to SHAM animals, indicating a chronic increase in release of proopiomelanocortin peptides from the anterior pituitary gland in response to hippocampal lesion. Circulating corticosterone levels were elevated in HPX rats as well. To control for effects of lesion size and location, additional animals received large ablations of cerebral cortex or cerebellum. In neither case was CRF or AVP mRNA significantly altered in the PVN. The results suggest that the hippocampus exercises a tonic inhibitory role on ACTH secretagogue production in neuroendocrine neurons promoting ACTH release.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
February 2003, Current opinion in pharmacology,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
May 1988, Pharmacological research communications,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
January 1996, Critical reviews in neurobiology,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
September 1996, Trends in endocrinology and metabolism: TEM,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
December 2005, Progress in neuro-psychopharmacology & biological psychiatry,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
May 2006, Psychoneuroendocrinology,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
June 1995, Journal of neuroendocrinology,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
May 2009, Immunology and allergy clinics of North America,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
June 2005, Annals of the New York Academy of Sciences,
J P Herman, and M K Schäfer, and E A Young, and R Thompson, and J Douglass, and H Akil, and S J Watson
December 1999, Bailliere's best practice & research. Clinical endocrinology & metabolism,
Copied contents to your clipboard!