Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. 1989

G Chen, and H Suzuki
Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

1. Electrical responses produced by acetylcholine (ACh) and histamine were recorded from smooth muscle cells of the intralobular small pulmonary artery (SPA), main pulmonary artery (MPA) and thoracic aorta of rats. 2. In MPA and SPA, ACh and histamine produced a transient hyperpolarization of the membrane, and the potential decayed exponentially with a time constant of 2-3 min. In aorta, ACh produced a sustained and histamine produced a transient hyperpolarization. 3. The ACh- and histamine-induced hyperpolarizations were blocked by atropine and mepyramine, respectively, or by removing the endothelial cells. 4. The amplitude of the hyperpolarization was increased in low [K+]o solutions and decreased in high [K+]o solutions. The ionic conductance of the membrane was increased during the hyperpolarization, suggesting an involvement of the increased potassium conductance. 5. A reproducible amplitude of hyperpolarization was generated when ACh or histamine was applied at intervals of over 10 or 30 min, respectively. 6. In aorta, after the transient hyperpolarization had ceased during continued application of histamine, ACh again produced a hyperpolarization, i.e. the transient nature of the hyperpolarization was not due to desensitization of the receptor upon which the hyperpolarizing substance acted, assuming histamine and ACh release the same hyperpolarizing substance. 7. ACh and histamine relaxed the tissues from SPA, MPA and aorta during the noradrenaline (NA)- or high [K+]o solution-induced contraction, in a concentration-dependent manner, only when the endothelial cells were intact. Both ACh and histamine were potent relaxants in MPA and aorta, but showed weak relaxing actions in SPA. 8. In aorta, ACh and histamine produced a sustained relaxation for up to 10 min, and Methylene Blue diminished and altered it to a transient relaxation (for histamine) or an initial large, followed by a small sustained (for ACh), relaxation. 9. In the presence of NA and NA plus Methylene Blue, ACh and histamine also produced a hyperpolarization similar to that seen in the control. 10. It is concluded that in arteries of the rat, ACh and histamine release a hyperpolarizing substance from the endothelial cells. This substance may be different from the endothelium-derived relaxing factor (EDRF), and is released mainly transiently. The hyperpolarization is generated by an increase in potassium conductance of the membrane, and this has some contribution to the endothelium-dependent relaxation.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011738 Pyrilamine A histamine H1 antagonist. It has mild hypnotic properties and some local anesthetic action and is used for allergies (including skin eruptions) both parenterally and locally. It is a common ingredient of cold remedies. Mepyramine,Pyranisamine,Anthisan,Boots Bite & Sting Relief,Kriptin,Mepyramine Maleate,Pyrilamine Maleate,Maleate, Mepyramine,Maleate, Pyrilamine
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005260 Female Females

Related Publications

G Chen, and H Suzuki
January 1992, Japanese journal of pharmacology,
G Chen, and H Suzuki
January 2000, Acta pharmacologica Sinica,
G Chen, and H Suzuki
March 1988, British journal of pharmacology,
G Chen, and H Suzuki
December 1995, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
G Chen, and H Suzuki
March 1989, The American journal of physiology,
G Chen, and H Suzuki
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G Chen, and H Suzuki
January 1975, Medical & biological engineering,
Copied contents to your clipboard!