Metabolism of pantothenic acid in hearts of diabetic rats. 1989

C J Beinlich, and J D Robishaw, and J R Neely
Geisinger Clinic, Weis Center for Research, Danville, PA 17822.

The metabolism of pantothenic acid (Pa) by cardiac muscle was studied in normal and diabetic rats. Tissue levels of Coenzyme A (CoA) are elevated in the heart during early (6 to 12 h) diabetes, remains at a high level for several days, and then returns to normal or below normal levels. The increase in total tissue CoA mainly occurs in myocytes as indicated by isolation of cardiac myocytes from control and diabetic animals and measuring their content of CoA. The CoA concentration increased from 37 to 93 microM in the cytosolic compartment and from 2.0 to 2.6 mM in the mitochondrial matrix. These effects of diabetes were reversed by insulin treatment. CoA synthesis in hearts removed from control rats and perfused in vitro was stimulated by including in the perfusate Pa, cysteine and dithiothreitol, but no exogenous energy substrate. This stimulated in vitro rate of CoA synthesis was reduced in hearts removed from diabetic animals, and the reduction increased with duration of diabetes. The reduced rate in diabetic hearts resulted from both a decreased rate of Pa phosphorylation and decreased Pa transport. Transport of Pa into myocytes was decreased by as much as 80% in hearts from diabetic animals. The low transport rate was due to a decrease in Vmax with no apparent change in Km. Treatment of the isolated heart with insulin did not correct the diabetic-induced reduction in Pa transport. The transport rate in normal and diabetic hearts was not influenced by the type of energy substrate provided to the heart.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010205 Pantothenic Acid A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. Vitamin B 5,Calcium Pantothenate,Dexol,Vitamin B5,Zinc Pantothenate,B 5, Vitamin,B5, Vitamin,Pantothenate, Calcium,Pantothenate, Zinc
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003065 Coenzyme A CoA,CoASH
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C J Beinlich, and J D Robishaw, and J R Neely
March 1990, Journal of molecular and cellular cardiology,
C J Beinlich, and J D Robishaw, and J R Neely
October 1988, Diabetes,
C J Beinlich, and J D Robishaw, and J R Neely
June 1982, The Journal of nutrition,
C J Beinlich, and J D Robishaw, and J R Neely
March 1946, Nutrition reviews,
C J Beinlich, and J D Robishaw, and J R Neely
October 1957, The American journal of physiology,
C J Beinlich, and J D Robishaw, and J R Neely
September 1967, The American journal of clinical nutrition,
C J Beinlich, and J D Robishaw, and J R Neely
June 1981, The American journal of physiology,
C J Beinlich, and J D Robishaw, and J R Neely
January 1956, The American journal of clinical nutrition,
C J Beinlich, and J D Robishaw, and J R Neely
February 1959, The Journal of biological chemistry,
C J Beinlich, and J D Robishaw, and J R Neely
January 1955, Transactions of the American Clinical and Climatological Association,
Copied contents to your clipboard!