Murine transforming growth factor-beta 2 cDNA sequence and expression in adult tissues and embryos. 1989

D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

Murine transforming growth factor-beta 2 (TGF-beta 2) cDNAs were isolated from cDNA libraries derived from a differentiated murine embryonic carcinoma cell line, PCC3. The composite cDNA sequence is 4267 nucleotides long, including a 1217 nucleotides 5'-untranslated sequence, and encodes a murine TGF-beta 2 precursor of 414 amino acids with 96% identity to its human counterpart. Several consensus polyadenylation sequences are present in the 1807 nucleotides 3'-untranslated sequence. Five TGF-beta 2 mRNA species are observed in the developing mouse fetus and they show different patterns of expression during development. TGF-beta 2 mRNA expression was also examined in adult mouse tissues, in which four of the five RNA species were observed. TGF-beta 2 mRNAs were present in all adult mouse tissues examined, except liver, and was most abundant in placenta, the male submaxillary gland and lung. The patterns of expression suggest a physiological role for TGF-beta 2 both in embryonic development and in the maintenance of adult tissues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011498 Protein Precursors Precursors, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
January 1988, DNA (Mary Ann Liebert, Inc.),
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
June 1987, DNA (Mary Ann Liebert, Inc.),
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
August 1989, Development (Cambridge, England),
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
January 2003, Journal of molecular medicine (Berlin, Germany),
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
January 2000, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
December 1991, American journal of respiratory cell and molecular biology,
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
February 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
February 1989, The Journal of cell biology,
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
November 2003, Archives of gynecology and obstetrics,
D A Miller, and A Lee, and R W Pelton, and E Y Chen, and H L Moses, and R Derynck
June 2005, Differentiation; research in biological diversity,
Copied contents to your clipboard!