Responses of locus coeruleus and subcoeruleus neurons to sinusoidal neck rotation in decerebrate cat. 1989

C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
Department of VCAPP, Washington State University, Pullman 99163.

The electrical activity of 99 neurons located in the locus coeruleus-complex, namely in the dorsal (n = 26) and the ventral part of the locus coeruleus (n = 46) as well as the locus subcoeruleus (n = 27), has been recorded in precollicular decerebrate cats during sinusoidal displacement of the neck. This was achieved by rotation of the body about the longitudinal axis of the animal, while maintaining the head stationary. A proportion of these neurons showed some of the main physiological characteristics attributed to the noradrenergic locus coeruleus neurons, i.e. (i) a slow and regular resting discharge, and (ii) a typical biphasic response to fore and hindpaw compression consisting of short bursts of impulses followed by a period of quiescence, due at least in part to recurrent or lateral inhibition of the corresponding neurons. Moreover, 14 out of the 99 neurons were activated antidromically by stimulation of the spinal cord at T12 and L1, thus being considered as coeruleo- or subcoeruleospinal neurons. Among these locus coeruleus-complex neurons tested, 73 out of 99 (i.e. 73.7%) responded to neck rotation at the standard frequency of 0.15 Hz and at the peak amplitude of displacement of 10 degrees. In particular 40 of 73 units (i.e. 54.8%) were excited during side-down neck rotation and depressed during side-up rotation, while 18 of 73 units (i.e. 24.7%) showed the opposite pattern. In both instances the peak of the responses occurred with an average phase lead of +34.2 degrees for the extreme side-down or side-up neck displacement; however, the response gain (impulses/s per deg) was on the average more than two-fold higher in the former than in the latter group of units. The remaining 15 units (i.e. 20.5%) showed phase angle values which were intermediate between those of the two main populations. As to the coeruleo or subcoeruleospinal neurons, 11 of 14 units (78.6%) responded to the neck input, the majority (nine of 11 units, i.e. 81.8%) being excited during side-down neck rotation. Within the explored region, the proportion of responsive units was higher in the locus subcoeruleus (85.2%) than in the locus coeruleus, both dorsal and ventral (69.4%). Moreover, units located in the former structure showed on the average a response gain higher than that found in the latter structures. Similar results were also obtained from the population of locus subcoeruleus-complex neurons which fired at a low rate (less than or equal to 5.0 impulses/s).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D011187 Posture The position or physical attitude of the body. Postures
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations

Related Publications

C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
February 1984, Neuroscience,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
January 1981, Neuroscience,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
October 1980, Journal of neurophysiology,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
November 1980, Journal of neurophysiology,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
November 1983, Journal of neurophysiology,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
January 1995, Journal of vestibular research : equilibrium & orientation,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
June 1976, Brain research,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
January 1991, Progress in brain research,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
May 1984, Brain research,
C D Barnes, and D Manzoni, and O Pompeiano, and G Stampacchia, and P d'Ascanio
January 1982, Experimental brain research,
Copied contents to your clipboard!