Artificial nucleosome positioning sequences. 1989

T E Shrader, and D M Crothers
Department of Chemistry and Molecular Biophysics, Yale University, New Haven, CT 06511.

We have used the emerging rules for the sequence dependence of DNA bendability to design and test a series of DNA molecules that incorporate strongly into nucleosomes. Competitive reconstitution experiments showed the superiority in histone octamer binding of DNA molecules in which segments consisting exclusively of A and T or G and C, separated by 2 base pairs (bp), are repeated with a 10-bp period. These repeated (A/T)3NN(G/C)3NN motifs are superior in nucleosome formation to natural positioning sequences and to other repeated motifs such as AANNNTTNNN and GGNNNCCNNN. Studies of different lengths of repetitive anisotropically flexible DNA showed that a segment of approximately 40 bp embedded in a 160-bp fragment is sufficient to generate nucleosome binding equivalent to that of natural nucleosome positioning sequences from 5S RNA genes. Bending requirements along the surface of the nucleosome seem to be quite constant, with no large jumps in binding free energy attributable to protein-induced kinks. The most favorable sequences incorporate into nucleosomes more strongly by 100-fold than bulk nucleosomal DNA, but differential bending free energies are small when normalized to the number of bends: a free energy difference of only about 100 cal/mol per bend (1 cal = 4.184 J) distinguishes the best bending sequences and bulk DNA. We infer that the distortion energy of DNA bending in the nucleosome is only weakly dependent on DNA sequence.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7

Related Publications

T E Shrader, and D M Crothers
April 1997, Journal of molecular biology,
T E Shrader, and D M Crothers
April 2017, Journal of computational biology : a journal of computational molecular cell biology,
T E Shrader, and D M Crothers
January 2012, ISRN molecular biology,
T E Shrader, and D M Crothers
February 1992, Biochimica et biophysica acta,
T E Shrader, and D M Crothers
August 2008, Journal of biomolecular structure & dynamics,
T E Shrader, and D M Crothers
February 2011, Journal of biomolecular structure & dynamics,
T E Shrader, and D M Crothers
April 2009, Nature genetics,
T E Shrader, and D M Crothers
November 2018, BMC bioinformatics,
T E Shrader, and D M Crothers
June 2024, Nucleic acids research,
T E Shrader, and D M Crothers
June 2010, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!