The effect of amfonelic acid or nisoxetine in combination with morphine on brain-stimulation reward. 1989

S Izenwasser, and C Kornetsky
Laboratory of Behavioral Pharmacology, Boston University School of Medicine, MA 02118.

Many drugs of abuse, including stimulants such as cocaine and amphetamine, and opioids like morphine and heroin, will lower threshold at which rats will work to receive electrical stimulation to the medial forebrain bundle-lateral hypothalamic region (MFB-LH). This effect is even greater when the two classes of drugs are coadministered. The underlying mechanisms by which this occurs are not completely understood, however there is considerable evidence suggesting that the catecholamines play a major role in mediating the reinforcing effects of these drugs. The present study was conducted to investigate the effects of amfonelic acid, an indirect dopamine agonist, and nisoxetine, a highly selective norepinephrine uptake blocker, alone and in combination with morphine, on the reward threshold for rewarding electrical intracranial stimulation. As in previous studies, morphine, as well as amfonelic acid, lowered the reward threshold with the amfonelic acid causing greater threshold lowerings than that of morphine. When a low (ineffective) dose of amfonelic acid was administered concomitantly with morphine, the threshold lowerings observed were larger than those seen with either drug alone and were often more than additive. Nisoxetine alone had no effect on the reward threshold and produced inconsistent results when combined with morphine. These findings support the thesis that amfonelic acid has abuse potential, and that its reinforcing effects may, in fact, be even greater than that of the opioids. Further, these results support the hypothesis that dopamine plays a more critical role in mediating brain-stimulation reward than dose norepinephrine.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009268 Nalidixic Acid A synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA GYRASE. Nalidixin,Nalidixate Sodium,Nalidixate Sodium Anhydrous,Nevigramon,Sodium Nalidixic Acid, Anhydrous,Sodium Nalidixic Acid, Monohydrate,Acid, Nalidixic,Anhydrous, Nalidixate Sodium,Sodium Anhydrous, Nalidixate,Sodium, Nalidixate
D009287 Naphthyridines A group of two-ring heterocyclic compounds consisting of a NAPHTHALENES double ring in which two carbon atoms, one per each ring, are replaced with nitrogens.
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140

Related Publications

S Izenwasser, and C Kornetsky
April 1989, Pharmacology, biochemistry, and behavior,
S Izenwasser, and C Kornetsky
October 1993, Pharmacology, biochemistry, and behavior,
S Izenwasser, and C Kornetsky
November 2004, Pharmacology, biochemistry, and behavior,
S Izenwasser, and C Kornetsky
February 1970, Physiology & behavior,
S Izenwasser, and C Kornetsky
January 1991, Journal of neural transmission. General section,
S Izenwasser, and C Kornetsky
January 1983, Journal of neural transmission,
S Izenwasser, and C Kornetsky
October 1987, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!