Formation of electronically excited states during the interaction of p-benzoquinone with hydrogen peroxide. 1989

A Brunmark
Department of Pathology II, University of Linköping, Sweden.

The reaction between p-benzoquinone and H2O2 in slightly alkaline solutions yields three major quinoid products that accumulate in the reaction mixture: (a) 2,3-epoxy-p-benzoquinone, (b) 2-hydroxy-p-benzoquinone and (c) p-benzohydroquinone. The reaction is accompanied by photoemission, probably originating from excited triplet 2-hydroxy-p-benzoquinone. These products originate from hydrogen peroxide and hydroxide nucleophilic addition to the C2 = C3 double bond, as well as secondary redox interactions. The hydroxy substituent and the epoxide ring exert a substantial influence on the electronic distribution in the p-benzoquinone molecule leading to a decrease in the half-wave potential, as compared to the parent p-benzoquinone. The generation of electronically excited states is the result of reactions secondary to the nucleophilic additions involving 2-hydroxy-p-benzosemiquinone, H2O2 and hydroxyl radical. The process involves the primary oxidation of 2-hydroxy-p-benzosemiquinone by hydrogen peroxide, followed by oxidation of the semiquinone by hydroxyl radical leading to the formation of the electronically excited quinone. The decay of the excited triplet to the ground state is accompanied by photoemission with maximal intensity at 485-530 nm. Thermodynamic calculations along with an observed increase of photoemission intensity in anaerobiosis point to the triplet (n, pi*) multiplicity of the excited state. The efficiency of chemiluminescence could be calculated as 10(-8) photons/2-hydroxy-p-benzoquinone molecule formed. Photoemission arising from the p-benzoquinone/H2O2 reaction was inhibited efficiently by addition of GSH to the reaction mixture. This may be due to deactivation of the triplet quinone by a 2-glutathionyl-p-benzohydroquinone adduct, involving thioether alpha-hydrogen atom-transfer to the triplet ketone.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D016227 Benzoquinones Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. 1,2-Benzoquinones,1,4-Benzoquinones,Benzodiones,2,5-Cyclohexadiene-1,4-Diones,o-Benzoquinones,p-Benzoquinones

Related Publications

A Brunmark
August 2016, The journal of physical chemistry. A,
A Brunmark
December 2014, Physical chemistry chemical physics : PCCP,
A Brunmark
February 2004, Physical review. E, Statistical, nonlinear, and soft matter physics,
A Brunmark
October 2008, The journal of physical chemistry. A,
A Brunmark
June 2015, Physical chemistry chemical physics : PCCP,
A Brunmark
July 2019, Journal of chemical theory and computation,
Copied contents to your clipboard!