Pacemaker activity recorded in interstitial cells of Cajal of the gastrointestinal tract. 1989

C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
Intestinal Disease Research Unit, McMaster University, Hamilton, Ontario, Canada.

The hypothesis was tested that interstitial cells of Cajal can generate slow wave activity. Intracellular recordings were performed only in the most superficial cells at the submucosal surface of the canine colonic circular muscle layer. An omnipresent and characteristic slow wave activity was present in all cells with a mean amplitude of 37 +/- 3 mV, a frequency of 4.6 +/- 0.1 counts/min (cpm), and a duration of 5.6 +/- 0.5 s; the average resting membrane potential was -70 +/- 1 mV. To determine the type of cell from which these recordings were obtained, methylene blue was injected by microiontophoresis. The strips were immediately fixed while the microelectrode was kept in the cell. A small segment of the tissue containing this cell was then processed for electron microscopy and serially sectioned. Electron-microscopic evidence showed that the microelectrode tip was positioned in an interstitial cell of Cajal (ICC): 1) several sections were observed with round cytoplasmic lesions of decreasing diameter followed by sections from the same cell without the lesion and 2) electron-dense material was observed in these sections due to the injected methylene blue. These cells were identified as part of the ICC network present at the muscle-submucosa interface of the circular muscle and were positively identified as ICC by the presence of cell processes. This is the first report giving direct evidence for the occurrence of electrical slow waves in ICC. It is essential support for the hypothesis that ICC are the actual pacemaker cells of the gut musculature.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females

Related Publications

C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
January 1996, Scandinavian journal of gastroenterology. Supplement,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
February 2006, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
February 1999, Harefuah,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
November 2023, The Journal of physiology,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
January 2006, Annual review of physiology,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
December 1998, The American journal of pathology,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
June 2018, Science signaling,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
January 2013, Saudi journal of gastroenterology : official journal of the Saudi Gastroenterology Association,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
January 1982, Advances in anatomy, embryology, and cell biology,
C Barajas-López, and I Berezin, and E E Daniel, and J D Huizinga
January 2003, Physiological research,
Copied contents to your clipboard!