Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells. 2017

Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, United States.

Many plasmids used for gene cloning and heterologous protein expression in Escherichia coli cells are low copy number or single copy number plasmids. The extraction of these types of plasmids from small bacterial cell cultures produces low DNA yields. In this study, we have quantitated yields of low copy and single copy number plasmid DNAs after growth of cells in four widely used broths (SB, SOC, TB, and 2xYT) and compared results to those obtained with LB, the most common E. coli cell growth medium. TB (terrific broth) consistently generated the greatest amount of plasmid DNA, in agreement with its ability to produce higher cell titers. The superiority of TB was primarily due to its high levels of yeast extract (24g/L) and was independent of glycerol, a unique component of this broth. Interestingly, simply preparing LB with similarly high levels of yeast extract (LB24 broth) resulted in plasmid yields that were equivalent to those of TB. By contrast, increasing ampicillin concentration to enhance plasmid retention did not improve plasmid DNA recovery. These experiments demonstrate that yields of low and single copy number plasmid DNAs from minipreps can be strongly enhanced using simple and inexpensive media.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D056915 DNA Copy Number Variations Stretches of genomic DNA that exist in different multiples between individuals. Many copy number variations have been associated with susceptibility or resistance to disease. Copy Number Polymorphism,DNA Copy Number Variant,Copy Number Changes, DNA,Copy Number Polymorphisms,Copy Number Variants, DNA,Copy Number Variation, DNA,DNA Copy Number Change,DNA Copy Number Changes,DNA Copy Number Polymorphism,DNA Copy Number Polymorphisms,DNA Copy Number Variants,DNA Copy Number Variation,Polymorphism, Copy Number,Polymorphisms, Copy Number

Related Publications

Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
June 1982, Gene,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
January 1980, Molecular & general genetics : MGG,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
June 1982, Journal of bacteriology,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
May 2024, Microbiology spectrum,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
January 1997, Plasmid,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
February 1976, Journal of bacteriology,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
May 2006, Journal of biotechnology,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
January 1993, Biotechnology progress,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
July 1989, Molecular microbiology,
Whitney N Wood, and Kyle D Smith, and Jennifer A Ream, and L Kevin Lewis
March 2001, Molecular biotechnology,
Copied contents to your clipboard!