Validation of Synthetic CRISPR Reagents as a Tool for Arrayed Functional Genomic Screening. 2016

Jenille Tan, and Scott E Martin
Department of Discovery Oncology, Genentech, South San Francisco, CA, United States of America.

To date, lentiviral-based CRISPR-Cas9 screens have largely been conducted in pooled format. However, numerous assays are not amenable to pooled approaches, and lentiviral screening in arrayed format presents many challenges. We sought to examine synthetic CRISPR reagents in the context of arrayed screening. Experiments were performed using aberrant DNA replication as an assay. Using synthetic CRISPR RNAs targeting the known control gene GMNN in HCT-116 cells stably expressing Cas9, we observed statistically significant phenotype among the majority of transfected cells within 72 hours. Additional studies revealed near complete loss of GMNN protein and editing of GMNN DNA. We next conducted a screen of synthetic CRISPR RNAs directed against 640 ubiquitin-related genes. Screening identified known and novel DNA replication regulators that were also supported by siRNA gene knockdown. Notably, CRISPR screening identified more statistically significant hits than corresponding siRNA screens run in parallel. These results highlight the possibility of using synthetic CRISPR reagents as an arrayed screening tool.

UI MeSH Term Description Entries
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D055785 Gene Knockdown Techniques The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES. Gene Knock Down Techniques,Gene Knock Down,Gene Knock-Down,Gene Knock-Down Techniques,Gene Knockdown,Gene Knock Downs,Gene Knock-Down Technique,Gene Knock-Downs,Gene Knockdown Technique,Gene Knockdowns,Knock Down, Gene,Knock Downs, Gene,Knock-Down Technique, Gene,Knock-Down Techniques, Gene,Knock-Down, Gene,Knock-Downs, Gene,Knockdown Technique, Gene,Knockdown Techniques, Gene,Knockdown, Gene,Knockdowns, Gene,Technique, Gene Knock-Down,Technique, Gene Knockdown,Techniques, Gene Knock-Down,Techniques, Gene Knockdown
D057166 High-Throughput Screening Assays Rapid methods of measuring the effects of an agent in a biological or chemical assay. The assay usually involves some form of automation or a way to conduct multiple assays at the same time using sample arrays. High-Throughput Screening,High-Throughput Biological Assays,High-Throughput Chemical Assays,High-Throughput Screening Methods,Assay, High-Throughput Biological,Assay, High-Throughput Chemical,Assay, High-Throughput Screening,Biological Assay, High-Throughput,Chemical Assay, High-Throughput,High Throughput Biological Assays,High Throughput Chemical Assays,High Throughput Screening,High Throughput Screening Assays,High Throughput Screening Methods,High-Throughput Biological Assay,High-Throughput Chemical Assay,High-Throughput Screening Assay,High-Throughput Screening Method,High-Throughput Screenings,Screening Assay, High-Throughput,Screening Method, High-Throughput,Screening, High-Throughput
D023281 Genomics The systematic study of the complete DNA sequences (GENOME) of organisms. Included is construction of complete genetic, physical, and transcript maps, and the analysis of this structural genomic information on a global scale such as in GENOME WIDE ASSOCIATION STUDIES. Functional Genomics,Structural Genomics,Comparative Genomics,Genomics, Comparative,Genomics, Functional,Genomics, Structural
D034741 RNA, Small Interfering Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions. RNA, Scan,Repeat-Associated siRNA,Scan RNA,Small Scan RNA,Trans-Acting siRNA,siRNA,siRNA, Repeat-Associated,siRNA, Trans-Acting,Short Hairpin RNA,Short Interfering RNA,Small Hairpin RNA,Small Interfering RNA,scnRNA,shRNA,tasiRNA,Hairpin RNA, Short,Hairpin RNA, Small,Interfering RNA, Short,Interfering RNA, Small,RNA, Short Hairpin,RNA, Short Interfering,RNA, Small Hairpin,RNA, Small Scan,Repeat Associated siRNA,Scan RNA, Small,Trans Acting siRNA,siRNA, Repeat Associated,siRNA, Trans Acting
D064113 CRISPR-Cas Systems Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS. CRISPR Cas Systems,CRISPR-Cas System,System, CRISPR-Cas,Systems, CRISPR-Cas
D064248 Geminin Geminin inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex. It is absent during G1 phase of the CELL CYCLE and accumulates through S, G2,and M phases. It is degraded at the metaphase-anaphase transition by the ANAPHASE-PROMOTING COMPLEX-CYCLOSOME.

Related Publications

Jenille Tan, and Scott E Martin
January 2015, Frontiers in genetics,
Jenille Tan, and Scott E Martin
November 2002, Nature biotechnology,
Jenille Tan, and Scott E Martin
August 2021, RNA biology,
Jenille Tan, and Scott E Martin
December 2014, Waste management (New York, N.Y.),
Jenille Tan, and Scott E Martin
January 2010, Bioscience, biotechnology, and biochemistry,
Jenille Tan, and Scott E Martin
November 2022, Journal of applied research in intellectual disabilities : JARID,
Jenille Tan, and Scott E Martin
January 2011, Methods in molecular biology (Clifton, N.J.),
Jenille Tan, and Scott E Martin
January 2021, Methods in molecular biology (Clifton, N.J.),
Jenille Tan, and Scott E Martin
December 2019, Molecular systems biology,
Copied contents to your clipboard!