Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension. 2017

Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
Department of Cardiovascular Medicine, Hanyang Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China.

Oxidative stress in the rostral ventrolateral medulla (RVLM) plays an important role in the pathophysiology of hypertension. Alpha‑lipoic acid (ALA) is widely recognized for its potent superoxide inhibitory properties, and it can safely penetrate deep into the brain. The aim of this study was to explore whether ALA supplementation attenuates hypertensive responses and cardiac hypertrophy by decreasing the NAD(P)H oxidase (NOX)-derived overproduction of reactive oxygen species (ROS) in the mitochondria in the RVLM, and thus attenuating the development of salt‑induced hypertension. For this purpose, male Wistar rats were randomly divided into 2 groups and either fed a high-salt diet or not. After 8 weeks, the rats were either administered ALA or an equal volume of the vehicle for 8 weeks. The rats fed a high‑salt diet exhibited higher mean arterial pressure (MAP) and higher plasma noradrenaline (NE) levels, as well as cardiac hypertrophy, as evidence by the increased whole heart weight/body weight (WHW/BW) ratio, WHW/tibia length (TL) ratio and left‑ventricular weight (LVW)/TL ratio. Compared with the rats in the NS group, the rats in the HS group only exhibited increased levels of superoxide, NOX2, NOX4 and mitochondrial malondialdehyde (MDA), but also decreased levels of copper/zinc (Cu/Zn)-superoxide dismutase (SOD), mitochondrial SOD and glutathione (GSH) in the RVLM. The supplementation of ALA decreased MAP, plasma NE levels and the levels of cardiac hypertrophy indicators. It also decreased the levels of superoxide, NOX2, NOX4 and mitochondrial MDA, and increased the levels of Cu/Zn‑SOD, mitochondrial SOD and GSH in the RVLM compared with the rats fed a high-salt diet and not treated with ALA. On the whole, our findings indicate that long‑term ALA supplementation attenuates hypertensive responses and cardiac hypertrophy by decreasing the expression of NAD(P)H subunits (NOX2 and NOX4), increasing the levels of mitochondrial bioenergetic enzymes, and enhancing the intracellular antioxidant capacity in the RVLM during the development of hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008063 Thioctic Acid An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. Lipoic Acid,Alpha-Lipogamma,Alpha-Lipon Stada,Alpha-Liponsaure Sofotec,Alpha-Lippon AL,Alphaflam,Azulipont,Fenint,Juthiac,Liponsaure-ratiopharm,MTW-Alphaliponsaure,Neurium,Pleomix-Alpha,Pleomix-Alpha N,Thioctacid,Thioctacide T,Thiogamma Injekt,Thiogamma oral,Tromlipon,Verla-Lipon,alpha-Lipoic Acid,alpha-Liponaure Heumann,alpha-Liponsaure von ct,alpha-Vibolex,biomo-lipon,duralipon,espa-lipon,Acid, alpha-Lipoic,Alpha Lipogamma,Alpha Lipon Stada,Alpha Liponsaure Sofotec,Alpha Lippon AL,AlphaLipogamma,AlphaLipon Stada,AlphaLiponsaure Sofotec,AlphaLippon AL,Injekt, Thiogamma,Liponsaure ratiopharm,Liponsaureratiopharm,MTW Alphaliponsaure,MTWAlphaliponsaure,Pleomix Alpha,Pleomix Alpha N,PleomixAlpha,PleomixAlpha N,Verla Lipon,VerlaLipon,alpha Lipoic Acid,alpha Liponaure Heumann,alpha Liponsaure von ct,alpha Vibolex,alphaLiponaure Heumann,alphaLiponsaure von ct,alphaVibolex,biomo lipon,biomolipon,espa lipon,espalipon
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
July 2013, American journal of hypertension,
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
July 2001, European journal of pharmacology,
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
January 2018, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
January 2016, Oxidative medicine and cellular longevity,
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
September 2018, Hypertension (Dallas, Tex. : 1979),
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
November 2008, Hypertension research : official journal of the Japanese Society of Hypertension,
Yu-Peng Huang, and Hong-Yan Jin, and Hui-Ping Yu
March 2007, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!