Effect of dexmedetomidine on cerebral ischemia-reperfusion rats by activating mitochondrial ATP-sensitive potassium channel. 2017

Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, No. 2 of Jingba road of Jinshui District, Zhengzhou, 450014, China.

The aim of the study reported here was to evaluate whether the mitochondrial ATP-sensitive potassium (mitoKATP) channel could participate in the effect of dexmedetomidine on cerebral ischemia-reperfusion (I/R) rats. Forty rats were randomly assigned into 5 groups: sham operation (S) group; cerebral I/R group; dexmedetomidine (D) group; 5-hydroxydecanoate (5-HD) group; 5-HD + D group. The cerebral I/R were produced by 2 h right middle cerebral artery occlusion followed by 24 h reperfusion. Dexmedetomidine (50μg/kg) was injected intraperitoneally before ischemia and after the onset of reperfusion. 5-HD (30 mg/kg) was injected intraperitoneally at 1 h before ischemia. The neurological deficit score (NDS) and the levels of super oxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated. Compared to group S, NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly higher, and SOD levels were significantly lower in the other groups (P < 0.05). Compared to group I/R,NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly lower, and SOD level was significantly higher in group D (P < 0.05). Compared to group D, NDS and the levels of MDA, MPO, IL-6 and TNF-α were significantly higher, and SOD level was significantly lower in group5-HD + D (P < 0.05). The activation of the mitoKATP channel could contribute to the protective effect of dexmedetomidine on rats induced by focal cerebral ischemia-reperfusion injury.

UI MeSH Term Description Entries
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009422 Nervous System Diseases Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle. Neurologic Disorders,Nervous System Disorders,Neurological Disorders,Disease, Nervous System,Diseases, Nervous System,Disorder, Nervous System,Disorder, Neurologic,Disorder, Neurological,Disorders, Nervous System,Disorders, Neurologic,Disorders, Neurological,Nervous System Disease,Nervous System Disorder,Neurologic Disorder,Neurological Disorder
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003652 Decanoic Acids 10-carbon saturated monocarboxylic acids. Capric Acids,Acids, Capric,Acids, Decanoic
D006880 Hydroxy Acids Organic compounds containing both the hydroxyl and carboxyl radicals. Hydroxy Acid,Acid, Hydroxy,Acids, Hydroxy
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries

Related Publications

Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
January 2016, Journal of biological regulators and homeostatic agents,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
June 2021, European journal of pharmacology,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
April 2007, Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
May 2005, Kidney international,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
October 2011, Journal of Zhejiang University. Science. B,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
March 2006, Brain research bulletin,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
December 2018, Zhongguo zhen jiu = Chinese acupuncture & moxibustion,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
February 2008, Neuroscience bulletin,
Feng Yuan, and Hongguang Fu, and Kai Sun, and Shubiao Wu, and Tieli Dong
January 1996, Cardiovascular research,
Copied contents to your clipboard!