Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. 2017

Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan; Department of Microbiology, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.

BACKGROUND Pseudomonas aeruginosa causes common infections in immunocompromised and cystic fibrosis patients. However, drug resistance capability and release of virulence factors play a key role in bacterial pathogenicity. METHODS Beta-lactamase-producing clinical isolates of P. aeruginosa were screened for biofilm formation and pigment production. Subsequently, all the isolates were subjected to the detection of six virulence genes (OprI, OprL, LasB, PlcH, ExoS, and ToxA). RESULTS Among beta-lactamase-producing isolates (n=54), about 85.18% (n=46) were biofilm producers. Pigment production was observed in 92.59% (n=50) isolates. Clinical samples were subsequently screened for detection of virulence factors. Among them, 40.74% (n=22) isolates were found to be OprI positive, while 29.62% (n=16) were OprL producers. In the case of LasB and PlcH, 24% (n=13) and 18.5% (n=10) isolates produced these virulence genes, respectively. Among the isolates, 37.03% (n=20) and 33.33% (n=18) expressed virulence factors ExoS and ToxA, respectively. Furthermore, 42.59% (n=23) isolates coproduced more than one type of virulence factors. CONCLUSIONS In the current study, pigment display, biofilm formation, and virulence genes were detected in P. aeruginosa clinical isolates. Such factors could be crucial in the development of drug resistance.

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D005098 Exotoxins Toxins produced, especially by bacterial or fungal cells, and released into the culture medium or environment. Exotoxin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097668 Pseudomonas aeruginosa Exotoxin A An NAD-dependent ADP-ribosyltransferase that catalyzes the transfer of the ADP ribosyl moiety of oxidized NAD onto elongation factor 2 (EF-2) thus arresting protein synthesis. Commonly used as the toxin in immunotoxins. Exotoxin A, Pseudomonas,Exotoxin A, Pseudomonas aeruginosa,Recombinant Truncated Pseudomonas Exotoxin A, Form PE38QQR,Recombinant Truncated Pseudomonas Exotoxin A, Form PE40,ToxA protein, Pseudomonas aeruginosa,ETA, Pseudomonas,PE38QQR,PE40 toxin
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D036002 ADP Ribose Transferases Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains. ADP-Ribosyltransferase,Mono(ADP-Ribose) Transferases,NAD(P)(+)-Arginine ADP-Ribosyltransferase,NAD+ ADP-Ribosyltransferase,ADP Ribose Transferase,ADPRT,ADPRTs,ART Transferase,ART Transferases,ARTase,ARTases,Mono ADP-ribose Transferases,Mono ADPribose Transferase,Mono ADPribose Transferases,Mono(ADP-Ribose) Transferase,Mono(ADP-Ribosyl)transferase,Mono(ADPribosyl)transferase,Mono-ADP-Ribosyltransferase,MonoADPribosyltransferase,NAD ADP-Ribosyltransferase,NAD(+)-L-arginine ADP-D-ribosyltransferase,NAD-Agmatine ADP-Ribosyltransferase,NAD-Arginine ADP-Ribosyltransferase,NADP-ADPRTase,NADP-Arginine ADP-Ribosyltransferase,ADP Ribosyltransferase,ADP-Ribosyltransferase, NAD,ADP-Ribosyltransferase, NAD+,ADP-Ribosyltransferase, NAD-Agmatine,ADP-Ribosyltransferase, NAD-Arginine,ADP-Ribosyltransferase, NADP-Arginine,ADP-ribose Transferases, Mono,ADPribose Transferase, Mono,ADPribose Transferases, Mono,Mono ADP Ribosyltransferase,Mono ADP ribose Transferases,NAD ADP Ribosyltransferase,NAD Agmatine ADP Ribosyltransferase,NAD Arginine ADP Ribosyltransferase,NAD+ ADP Ribosyltransferase,NADP ADPRTase,NADP Arginine ADP Ribosyltransferase,Ribose Transferase, ADP,Ribose Transferases, ADP,Transferase, ADP Ribose,Transferase, ART,Transferase, Mono ADPribose,Transferases, ADP Ribose,Transferases, ART,Transferases, Mono ADP-ribose,Transferases, Mono ADPribose

Related Publications

Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
May 2004, Antimicrobial agents and chemotherapy,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
June 2024, Infection,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
July 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
January 2008, Indian journal of medical microbiology,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
October 2005, Indian journal of pathology & microbiology,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
January 2011, Indian journal of medical microbiology,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
January 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
March 2024, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
January 2020, Infectious disorders drug targets,
Waheed Ullah, and Muhammad Qasim, and Hazir Rahman, and Yan Jie, and Noor Muhammad
June 2015, Infection & chemotherapy,
Copied contents to your clipboard!